

Backend

Developer in

30 Days

Acquire Skills on Api Designing,

Data Management, Application Testing,

Deployment, Security and Performance

Optimization

Pedro Marquez-Soto

www.bpbonline.com

http://www.bpbonline.com/

Copyright © 2022 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor BPB Online or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, BPB Online cannot
guarantee the accuracy of this information.

Group Product Manager: Marianne Conor
Publishing Product Manager: Eva Brawn
Senior Editor: Connell
Content Development Editor: Melissa Monroe
Technical Editor: Anne Stokes
Copy Editor: Joe Austin
Language Support Editor: Justin Baldwin
Project Coordinator: Tyler Horan
Proofreader: Khloe Styles
Indexer: V. Krishnamurthy
Production Designer: Malcolm D'Souza
Marketing Coordinator: Kristen Kramer

First published: August 2022

Published by BPB Online
WeWork, 119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55513-212

www.bpbonline.com

http://www.bpbonline.com/

Dedicated to
My beloved wife Alejandra

&
My sons Santiago and Bruno

About the Author
Pedro Marquez Soto is a full-stack software developer with a Master of
Science in Computer Science and Machine Learning. He has more than 10
years of professional experience in multiple roles that cover application
security, back-end, front-end development, and infrastructure development.
He currently works as a full-stack engineer at LinkedIn.

Acknowledgement
There are a few people I want to thank for the continued and ongoing
support they have given me during the writing of this book. First and
foremost, I thank my wife and friend Alejandra for her unconditional love
and support in all my professional ventures. This book was only possible
because she believed in me; she had the patience of having a husband who
spent hours locked in the office, writing.
I wrote this book in the middle of a pandemic while at the same time I was
completing my master's degree. The only thing that kept me on track was
having the safe space of a loving family and their support for me to pursue
my passions.
I want to thank my mom, Josefina, who has worked tirelessly to provide her
kids with an education; without all her hard work and love I would have
never had acquired the knowledge needed for writing this book. I also want
to thank my father Pedro for teaching me to never give up, especially when
life gets hard.
I am grateful to all the official and unofficial mentors I’ve found during my
lifetime. Managers and other smart people I’ve met in the past decade who
gave me the opportunity of working on interesting projects that led to
constant professional improvement. These people were honest when my
code was not as good as it could be and showed me how world-class
software developers work.
My gratitude also goes to the team at BPB Publications for giving me the
opportunity to write my first book and providing guidance during this
process that was new to me. They gave me the right amount of freedom and
support that allowed me to complete this daunting task. BPB Publications is
the best home this book could have, and for that, I will be forever thankful.
Even if my name is on the cover of this book, this project is a team effort.
All these people are co-authors, and no author should be ungrateful enough
to forget that.

Preface
This book covers the process of building large-scale software applications
from the point of view of a back-end developer. More than a tutorial on
specific tools or frameworks, this book outlines principles and processes
shared across the multiple tech stacks. Tools and frameworks change with
time: they are replaced by newer stacks; the patterns, however, remain the
same. The goal is to show you how things work and why they work the way
they do.
This book connects different areas commonly isolated in educational
material: API development, database integration, application security, and
deployment processes. It gives an integral vision of how the largest
software companies build software capable of serving millions of users.
This vision benefits people starting their careers as software developers and
those who have spent most of their careers working on only one of these
areas.
This book has 12 chapters chronologically ordered to follow the phases of a
software development project. Ideally, you could take this book with you
and read across each chapter in order as your project evolves. Each chapter
builds on the previous, so it is advised for you to read from start to end.
However, each chapter is also self-contained enough for you to return to
any of them when you need to refresh your knowledge.
The first part of the book covers the essential aspects of back-end
development. It outlines the process of converting business needs into
requirements, defining elegant APIs that are flexible enough to evolve with
the application, and choosing the correct type of database. This first part
also offers a deep dive into the inner workings of web-based applications,
building a robust mental model that will allow you to fully grasp the
abstractions built on top of them.
The second part covers patterns and processes needed to build quality into
software applications: Testing, application security, error and log
management, framework adoption, and continuous integration and

deployment. These concepts are the basis for the daily work of software
developers across the globe.
The third and last part of the book serves two purposes: Describe how to
jump from simple apps to large-scale, distributed systems and concepts that
you can use to advance your career and become a senior developer.
Chapter 1 covers the topics of problem-solving and requirements
gathering. It provides background on the importance of software
applications as tools to solve problems. This chapter gives you useful
heuristics to successfully recollect business requirements in an iterative
process. Then, the chapter provides a high-level view of large-scale
software applications and all the components and tools that address the
functional and non-functional requirements for the project.
Chapter 2 is a deep dive into web-based applications and the client-server
architecture. It details the inner workings of web servers, guiding you to
create your own Java-based web server and compare it with production-
ready servers like NodeJS’s Express. This detailed view helps you
understand the “magic” behind these tools, which is a critical skill for
becoming a senior developer.
Chapter 3 disambiguates the term “API”. It explains what APIs are, why
they are useful to back-end developers, and how they fit in the process of
creating an application. Then, the chapter guides you on how to design
flexible, data-driven APIs and how to choose the right tools to implement
them: REST, GraphQL, and gRPC.
Chapter 4 will cover state and data management, which includes databases.
It provides background on why we need databases, how to model real-life
data, and how to choose the proper database for your business needs. This
chapter covers the differences between SQL and NoSQL, and highlights the
differences between the most common products for each, like relational,
document, and graph databases.
Chapter 5 explores the area of testing. It details the manual and automated
testing process and highlights the differences between concepts like mocks,
stubs, and test doubles. This chapter also provides good practices for
writing unit and integration tests and their differences. Then, it describes
other areas of non-functional testing like performance and security testing.

Chapter 6 covers application security. This chapter defines the concepts
used by application security experts that any software developer should
know. It describes how to integrate authentication and authorization
services into the application, including industry standards like OAuth2,
SAML, and OpenID Connect. This chapter also covers some of the most
common security vulnerabilities and advises how to prevent them.
Chapter 7 explains the topic of error and log management in software
applications. It highlights how some coding languages deal with errors, how
to find errors in applications deployed to production environments, and how
to centralize and monitor errors in distributed applications using tools like
Logstash, Elastisearch, and Kibana.
Chapter 8 covers a deep dive into application frameworks. The chapter
explains what frameworks are, what they are used for, and the patterns they
use to solve everyday challenges for back-end developers. It then introduces
popular frameworks like Java’s Spring and Hibernate and Python’s Django.
It contrasts how patterns like MVC are implemented in these frameworks
and provides the groundwork for developers to pick the proper framework
for their use case.
Chapter 9 describes how to deploy an application to a production
environment. It gives some historical background on how applications have
been delivered to users, the challenges faced, and how modern CI/CD
(Continuous integration and deployment) flows enable development teams
to deliver their applications fast. We also explore the concept of replicable
environments through virtualization using Virtual Machines and Docker
containers and how they integrate into the CI/CD process.
Chapter 10 presents advanced topics for creating large-scale, distributed
applications. The chapter covers how to measure performance to find
improvement opportunities. Then, we explore techniques to improve
performance like caching, asynchronous architectures, and asynchronous
programming through the concepts of “Promises” and “Futures”. It presents
some tools used to increase performance in large applications like Redis
and Kafka.
Chapter 11 takes a step back and integrates every previous chapter into one
process for designing a software application. The chapter describes a step-
by-step approach to converting requirements into technical specs,
estimating server and storage size requirements, and principles used for

scaling apps. This process is a blueprint that is especially useful for system
design interviews.
Chapter 12 the last chapter in this book, outlines career advice for back-
end developers looking to become senior developers. It describes the typical
responsibilities of both junior and senior developers, and it provides
guidelines for preparing for tech interviews, finding mentors, and finding
resources to keep increasing your technical knowledge.

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/sueh55f
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Backend-Developer-in-30-Days. In
case there's an update to the code, it will be updated on the existing GitHub
repository.
We have code bundles from our rich catalogue of books and videos
available at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :
errata@bpbonline.com
Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to

https://rebrand.ly/sueh55f
https://github.com/bpbpublications/Backend-Developer-in-30-Days
https://github.com/bpbpublications
mailto:errata@bpbonline.com

the eBook version at www.bpbonline.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in
touch with us at: business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on BPB books and eBooks.

http://www.bpbonline.com/
mailto:business@bpbonline.com
http://www.bpbonline.com/

Piracy
If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an
author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit
www.bpbonline.com. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insights
with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why
not leave a review on the site that you purchased it from? Potential
readers can then see and use your unbiased opinion to make purchase
decisions. We at BPB can understand what you think about our
products, and our authors can see your feedback on their book.
Thank you!
For more information about BPB, please visit www.bpbonline.com.

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/

Table of Contents
1. Building Multi-User Apps

Structure
Objective
Digital transformation and a little history

Digital transformation and the Internet
Software transformation

Designing apps to solve real-world problems
Caring for user problems as a back-end developer
Finding a problem to solve

Define a sample use case: The Pizza Place ordering system.
Defining functional and non-functional requirements

An ineffective way of collecting requirements
The requirement definition cycle

Find out what is the problem your client is trying to solve
Get a detailed picture of the business.
Request the help of one of your client’s domain-experts
Learn how the existing process works today
Build prototypes and revise requirements
Use case: Defining requirements for the Pizza Place

The modern system design: a ten thousand-feet view
Getting the front-end out of the way

Building blocks
Conclusion
Questions

2. The Client-Server Architecture
Structure
Objectives
Architecture details

Abstraction layer: Frontend client and backend client
Abstraction layer: Data access service client, database server

HTTP: The language of the web

Implementing a web server
The main process
Serving a response
Multi-user support with multi-threading

Using a production-ready server
Enabling HTTPS in Express

Layered architecture: Fully splitting the client from the server
Splitting clients

Client versus server computing
Web servers as stateless services

Storing session data
Use case: Applying a client-server architecture to the Pizza Place app
Client server versus peer-to-peer
Conclusion
Questions
References

3. Designing APIs
Structure
Objectives
What is an API?

Functions as contracts
Interfaces and design patterns
Remote APIs: RPC, SOAP, REST, and GraphQL

Building a remote API with RPC/gRPC
Build the gRPC server
Build the gRPC client
When to use gRPC

SOAP and web services
Building REST APIs

Actions versus HTTP request methods
Naming resources
Singular versus plural

Relationships
Versioning
Caching

Effective REST APIs: HATEOAS

Building APIs with GraphQL
Building standalone APIs

Standalone API: Headless CMS
Standalone API: Public APIs

Use case: Designing a remote API for the Pizza Corner
Conclusion
Questions
References

4. End-to-End Data Management
Structure
Objectives
Defining the application state

Hardware storage
Understanding in-memory data storage

In-memory cache
In-memory databases
Simple storage in text and binary files

Understanding complex data storage
SQL or NoSQL?
Document databases

High locality
Few relationships
Unstructured data

Relational databases
Models are related but independent
Multiple relationships
Fixed structure
Normalization

Graph databases
Data with a lot of connections
Data where the relationships are first-class citizens

Scalability
File storage repositories
Beyond technical requirements

Indexing
Reducing time complexity

Example: Benchmark the impact of indexes in SQLite
Backup and recovery

Backup database files
Creating backups with activity logs
Backup through replication
Tackling gaps in backups

Designing data storage in a production system
Choosing a deployment strategy

Database and application share a server
Deploy database in its own server(s)
Embedded databases
Combining databases to approach complex use cases

Use Case: Defining a data model for the Pizza Place application
Requirement: Users should be able to see the menu on their phones

or computers
No attributes, fixed size of ingredients
No attributes, dynamic list of ingredients
With attributes, dynamic size

Choosing a data store for storing the pizza menu
The winner
Scaling the database

Conclusion
Questions
References

5. Automating Application Testing
Structure
Objectives
Certainty through testing
Manual testing

Types of manual tests
Building effective manual tests

Creating a test plan
Executing the test plan
Creating detailed reports
Validating fixes
Update test plan

Advantages of manual testing
Explorability
Horizontal validation
User-centered vision

Manual testing and Agile
Let others test your code

Automated testing
Unit testing

Testing in isolation: Doubles, stubs, and mocks
Isolated code is easier to debug
Isolating test dependencies
Test mocks
Stubs versus mocks

Coverage
To use coverage or not to use it

Test-driven development
Integration testing with Selenium

Defining a test environment for integration testing
Simulate a test environment close to production

Testing and CI/CD
Other automated tests: Static code analyzers
Defining effective test cases

Defining a single use case per test
Do not mock everything
On equal conditions, prefer unit tests over integration tests

Non-functional testing
Application security and penetration testing
Load testing
Performance testing
Accessibility testing

Conclusion
References

6. Securing Applications
Structure
Objectives
The CIA triad: Confidentiality, Integrity, and Availability

Confidentiality
Loss of confidentiality

Integrity
Loss of integrity

Availability
Loss of availability

Access Control: Authentication and authorization
Authentication

Identification: Username and password
Problems with passwords
Best practices for passwords
Identification: Multi-factor authentication
Single Sign-On

Authorization
Roles and groups
Least privilege principle

Use case: Implementing basic authentication and authorization for the
Pizza Place
Identify user roles
Building an authentication service

Define user management storage
Define password-related protections
Build web forms for signup and login
Apply authorization controls
Translate a high-level authorization map to implementation

details
Using scopes to check authorization
Test access control

Federated authorization
Pros and cons of federated authentication
Security Assertion Markup Language (SAML)
OpenID

OAuth2
Terms
Request an authorization code
Request an access token
The implicit flow

Building OpenID from OAuth2
Building security into the application’s design

Creating a Threat Model
Decompose the application
Determine and rank threats
Determine countermeasures and mitigation

OWASP Top 10: The most common vulnerabilities
Conclusion
Questions
Resources

7. Handling Errors
Structure
Objectives
Why do we need to handle errors?

Understanding common causes of errors
Types of error handling

Exceptions
Using stack traces to debug problems
Defining exception types
Catching exceptions
Errors validated at compile time

Errors as return values
Implementing good exception handling

Preventing all the errors we can
Handling and mitigating errors in production

Defining good error messages
Bubble up!
Providing a fallback
Letting the error propagate

Finding production errors with logging
Anatomy of a log entry
What to log?
Designing good log and error messages
Persisting log entries to file

Handling errors in distributed systems
Using case: Logging errors with the ELK stack

Logging errors locally
Configuring Logstash

Logstash input
Logstash filter
Logstash output

Installing and configuring Elasticsearch and Kibana
Creating Kibana dashboards

A/B testing and gradual deployment
Creating a deployment plan

Conclusion
Resources

8. Adopting Frameworks
Structure
Objectives
What problems do frameworks fix?

Solving existing problems
Frameworks and design patterns
Libraries and frameworks

Pre-building abstractions
Framework’s benefits

Common patterns addressed by frameworks
Automation tools and package managers

Automation tools
Native package management

Handing web requests (e.g. Spring MVC, Django)
How frameworks are born: The use of the Spring framework
About MVC
Dependency Injection
Spring’s XML configuration
Code-based configuration
Annotation-based configuration
Spring MVC
More MVC: Express
The downfall of MVC

Database access with ORMs
JPA and Hibernate

Mapping tables to entities
Inserting and querying data
More ORMs: Python’s Django ORM
The downsides of ORM

Choosing a framework
The impact of community

When not to use frameworks
Learning the framework instead of using the basics
Adding debugging complexity

Zero-cost abstractions
Conclusion
References

9. Deploying Applications
Structure
Objectives
Defining a robust deployment process: CI/CD

Before CI/CD
A step forward: Deployment scripts

The advantages of a CI/CD pipeline
Creating reproducible environments

Moving out of shared environments
Advantages of isolated and reproducible environments

Version control
Git

Creating a Git repository
Staging and committing new files
Making changes to existing files
Commit details
Branches
Merge
Remote repositories
Cloning repositories

Merging conflicts
Using Git hooks
Git to enforce reproducible code
SVN and other CVS

Virtual machines
Virtual infrastructure

Containers (Docker)
VMs versus containers

Working with stateless containers
Use case: Creating a reproducible deployment environment for the

Pizza Place app using Git and Docker
Setting up the application

The web directory
The nginx directory

The docker-compose.yml and nginx.conf files
Adding Git
Docker in CI/CD
The trade-off

Conclusion
Questions
Resources

10. Creating High-performance Apps
Structure
Objectives
Measuring to improve the performance

Synthetic testing versus RUM
Using percentiles

Improving the performance
Improving the performance with caching

Defining reading and writing load
Cache patterns
Cache-aside and read-through cache
Caching write-heavy applications
Write-through cache
Write-behind cache
Choosing the right caching strategy
Eviction policy
Other caching tools: Proxies and CDNs
Use case: Caching long-running operations with Redis
Using Jedis

Using Redisson
Improving the performance with distributed systems

Keeping data consistency
Data consistency in replicas
Multiple read replicas, single write replica
Eventual consistency versus strong consistency
Data consistency in sharding

Microservices
Improving performance using asynchronous communication

(queues)
Improving the performance using asynchronous programming

Promises and futures
Conclusion
Questions
References

11. Designing a System
Structure
Objectives
The system design process

Example: The Pizza Place (at scale)
Defining and clarifying requirements
Defining the system’s interface
Defining data models
Calculating the system scale and size

Estimating the storage size
Estimating QPS
Estimating the storage throughput
Calculating the cache size
When to stop estimating the size

Creating high-level and low-level designs
Defining a high-level design

Defining the use case flow
Finding gaps in assumptions

Defining a low-level design
Designing the client
Designing the web server

Designing the service layer
Designing the database layer
Defining a distributed database strategy
Defining read and write replicas
About scaling the file storage

Integrating each layer
Client to server
Web server to services
Services to database
Overall low-level design

Identifying failure points
Failure case: A web server goes down
Failure case: A microservice instance goes down
Failure case: The file storage service goes down
Failure case: A node in the service queue goes down
Failure case: A node in the cache layer goes down
Failure case: A database server goes down
Failure case: The infrastructure for a whole region goes down
Extra considerations about failure management

Conclusion
Questions
Resources

12. Bootstrap Your Career Path
Structure
Objective
Defining the expectations on junior developers

Joining our first development team
Following guidance from other developers

What makes a senior developer?
Characteristics of a senior software developer

Improving hard and soft skills
Improving technical skills
Improving people skills

Practicing conflict resolution
Working on communication skills

Preparing for technical interviews

Getting an interview
Building a good resume
The importance of networking

Improving interview skills
The technical interview process

Approaching coding problems
Using data structures efficiently
Using algorithms efficiently
Coding a solution
Getting better at coding interviews
Working on system design interviews
Take-home assignments
Approaching non-coding modules
Asking the right questions

Finding mentors
Finding resources to keep learning
Conclusion
Resources

Index

S

CHAPTER 1
Building Multi-User Apps

olving problems is a software developer’s primary job; we dedicate our
careers to gaining the skills we need to be efficient problem-solvers. We

learn computer languages, frameworks, libraries, and design patterns to
build a diverse toolset to tackle the great variety of problems this world
offers.
In this chapter, we will talk about problem-solving: we will discuss how the
problems human beings have found across history have evolved. We will
see that technological advances are cyclical, and understanding these
patterns will help us predict the problems we may find in the future and
design better solutions.
We will also discuss what kind of problems we can fix today and how we
can translate problem statements into technical challenges for which we can
offer software-based solutions.
Then, we will move on to effectively capture all the requirements for a new
project, describing some obstacles we may find in the process and good
practices to sort them out.
Ultimately, we will have a high-level view of the variety of tools available
to us to build software applications. In later chapters, we will explore these
tools in detail, but we will use this chapter first to understand how they all
fit together.

Structure
In this chapter, we will learn the following topics:

Digital transformation and a little history

Digital transformation and the Internet

Designing apps to solve real-world problems

Caring for user problems as a back-end developer
Finding a problem to solve

Defining a sample use case: The Pizza Place ordering system.
Defining functional and non-functional requirements

An ineffective way of collecting requirements
The requirement definition cycle

The modern system design: a ten thousand-feet view

Objective
After completing this chapter, you should clearly understand the primary
goal of software developers: To solve real-world problems.
By the end of this chapter:

You will understand how to find good problems to solve as a
developer.
You will realize that we must find a problem to solve before trying to
build an app.
You will have a list of heuristics to efficiently define functional and
non-functional requirements and know which practices to avoid.
You will understand the tools available to us for building modern
applications.

Digital transformation and a little history
During the second half of the 18th century, a transformation started in
Europe: Goods crafted by hand began to be manufactured by machines.
Powered by steam and later on by electricity, these machines allowed
people to produce goods faster and for less money; with lower production
costs, manufacturers could reach more consumers than ever.
This period, known as the Industrial Revolution, changed how the business
operated and profoundly transformed society. Rural communities started to
grow into urban spaces. Cities that were geographically apart increased
communication and trade thanks to advances in transportation (like the

creation and improvement of trains and steam-powered boats). Small
communities started merging into larger ones.
People moved into cities as many agrarian jobs were replaced by industrial
work. Change is never easy, but it was a specifically difficult transition for
many people whose current skills were not always valuable for the new job
market. Artisans who couldn’t compete with the large production machines
had to adapt if they wanted to keep providing for their families.
Jobs became more specialized, and workers needed instruction to operate
the new machines, so new schools and apprenticeships were created. With
people concentrated in urban communities, education also was streamlined.
Formal education and professions became ubiquitous.
To speed everything up, money was also concentrated in cities where the
manufacturing plant owners could now produce more for less. A
concentration on resources lead to inequality by tut also allowed more
investment in technological advances, which led to the improvement of the
same machines that started this transformation.
A Second Industrial Revolution brought mass-production through
electricity, and a Third Industrial Revolution brought automation through
electronics and information technology. Each of these new phases was built
on the top of the previous one, each one with a more extensive reach.
Industrialization became digitalization.
People were forced to adapt in each of these revolutions, not always without
resistance.

Note: As it happened then, people in the present have the same kind
of fear of change and incertitude. People are afraid some professions
can become obsolete due to advances in Artificial Intelligence,
resulting in people losing their jobs.
The term “Luddite” was created to describe people who disliked new
technology and its threat to their interests like job security and
privacy.
Many make fun of people who dislike technological advances, but we
seldom try to empathize. The industrial and digital revolutions have
not been perfect nor socially fair. There is still much debate on how
the industrial revolution improved people’s quality of life beyond the

apparent riches it gave to the few owners of fabrics and their social
circles.
Some anthropologic studies have found that inequality grew in the
United Kingdom during the industrial revolution as “early
industrialization disproportionately benefitted capital more than
other factors of production”:

https://www.econstor.eu/bitstream/10419/201834/1/1671601041.pdf

This same conversation about technology and inequality is happening
today when CEOs and founders of technology companies are the
wealthiest people in the world.
Feeling anxious about technological progress is expected.
Understanding how people were historically able to adapt to new
emerging social dynamics gives us an insight into how to prepare
society for the future.
As the group that constantly introduces change, it’s part of our job to
make sure we do everything in our power to guarantee that
technology advances take into account issues like inequality or
privacy.

As the digital era started and technology became more than just steam
machines, people’s lives and needs also kept changing.

Digital transformation and the Internet
Suppose charted the amount of technological progress as a function of time.
That chart would show that progress has been exponential since the start of
the first industrial revolution. As time advances, we take higher
technological leaps.
We have seen more technological changes in the last couple of decades than
in the previous 200 years, and we’re only starting. We now live in a digital
world, and the advances in fields like Machine Learning, AI, and quantum
computing are only accelerating our adoption of it.

https://www.econstor.eu/bitstream/10419/201834/1/1671601041.pdf

Tip: CPUs are a good reference for how technology advances.
Moore’s Law, even as we are testing its limits lately, describes how the
capacity of processors increases exponentially in time. Technological
advancement has progressed like CPUs have: as time passes, the
world changes at a faster pace; breakthroughs happen more often.

Since we as humans have lived this intense and accelerated transformation
before, we can get answers to a few questions we have today. For instance,
many people wonder what will happen when AI starts executing jobs that
people have today. Still, as we just saw, people always find a way to adapt,
even at the cost of an intense social change and a redistribution of
resources.
Just as our needs and how we fulfill them changed during the first phases of
the Industrial Revolution, the creation and wide adoption of the Internet
have transformed humanity: The Internet is the platform on which the Third
and Fourth Industrial Revolutions are built.
People’s needs are now more complex and abstract. For instance, social
needs go beyond interacting with peers in their direct communities; we are
now part of social groups not limited by distance or time. People expect to
be connected, even living in a different country or continent.
A whole generation of people now prefers to order food online than order
using the phone or just walking into a restaurant. We pay our bills online.
New movies and TV shows are being premiered online instead of through
movie theaters or cable subscriptions. Podcasts are now as ubiquitous as
radio. Music streaming has displaced the consumption of CDs.
Technology is still changing people’s roles in society, and as software
developers, we need to understand and take advantage of that knowledge.
Just as when the farmer had to learn how to operate manufacturing
machines, people creating and streaming digital content (e.g., YouTubers)
are jobs that are increasingly replacing traditional professions (many of
them are destined to be consumed by AI).
Software developers who have understood the new needs of our ever-
changing society have built the tools on which these new professionals
operate -making millions in the process.

Software transformation
The field of software development is everything but static. Few software
developers get to work on the same technology all their careers. Adapting
and learning new technologies is an essential requirement for our
profession. The best software developers understand change and adapt to it.
The Internet itself has changed. The web stopped being the collection of
unidirectional static content it once was; it’s now a highly dynamic platform
that enables communication back and forth between the owners of the
websites and the users. Modern applications provide value based on the
information they receive from their users.
Our users themselves have changed: the Internet is not the place only for
the technically savvy, the academics, or the hobbyists that it once was.
Thanks to years of hard work from brilliant people and experts in Human-
Computer interaction, the Internet is now a democratic space where you
don’t need any understanding of how software is built to use it. Users are
now grandparents, professionals from any area of specialization, and even
toddlers.
The scale of software has increased due to the expansion in the use of the
Internet. Web servers now have so many users that a single powerful
computer is not enough to serve requests to all of them. The data that
modern applications consume don’t fit in a single machine, even
considering the high-capacity hard drives we’ve been able to develop in
recent years.
The software development process keeps changing, too: We don’t build
code only for computers anymore; we build applications that now run on
smartphones, TVs, and even toasters or fridges. And you don’t need a Ph.D.
or even a college education to build code: Teenagers are making millions of
dollars selling apps they create in their spare time.
One thing doesn’t change, though: People still have problems that need
solutions. Even with the advances we just described, millions still can’t get
the essential services and resources they need to survive. The portion of
humanity who can take advantage of technology has solved their basic
needs so well that they have time and resources to worry about other, more
abstract problems.

Designing apps to solve real-world problems
Many software developers forget a simple but critical principle: Apps are
tools. They are a means to an end, even if the end itself is too abstract or
frivolous. And most of the time, the software itself isn’t that end.
Software developers love to build applications, and that love makes us
forget that most of the time, we build applications for someone other than
ourselves.
The startup accelerator Y Combinator offered a series of lectures at
Stanford University in 2014 titled “How to Start a Startup”. In those
lectures, a question arose: How to choose the topic or idea on which you
could base your company. The proposed solution: Find a problem your
users may have and find a solution; it doesn’t matter how big or small the
problem is, as long as it’s a real-world problem.
Many startups fail because they focus more on the technology they are
using than on creating something that helps people. They spend too much
money and time getting the hottest tech stack, the most complex
frameworks. For these failed companies, all these layers of complexity hide
a single truth: There’s no real problem to fix, no user that needs their
products.
Other companies might have a real problem to solve but still miss the mark.
They will again try to build something complex, too smart for their own
good. They could have built a more straightforward solution with less
“cool” technology for considerably less money and still give solutions to
their users.
Your users don’t care if you used Java or Python to build the app they need.
The only people who care about those things are other developers, who are
not your primary target most of the time. Without a real problem to solve,
apps are nothing more than fun mental exercises for the developers who
create them.
And we are not saying that you can’t build code just because you enjoy it.
But when you’re getting paid by someone else to do it, creating an app that
works correctly is a priority.

Tip Search term: creative coding.

There is a type of computer programming that is not based on solving
problems: Creative coding. This non-functional coding is focused on
creating abstract representations like artistic work, visuals, or audio.
Companies like Google have created events for people to build code as
a way of artistic expression, and it’s a field we, as software developers,
are only starting to explore. Many front-end developers use CSS to
build visual works in the browser that push the limits of web
technology.
Just like you would paint a picture or write a song to have fun and
express yourself, consider creating code for more than starting your
own business or making money.

Caring for user problems as a back-end developer
Backend developers work at a layer that is abstracted away from the users:
Non-technical users will struggle to see the direct connection between your
work and the app they use and love.
This abstraction is normal, as it’s common for back-end developers to work
in less user-centered tasks: Dealing with servers, APIs, and connecting to
databases. Frontend developers, on the other hand, tend to work with more
user-centered requirements because their main goal is building the interface
with which the users will work directly.
This disconnection challenges back-end developers: It’s easy to lose sight
of the problems we are trying to fix with our app. You can spend months or
even years in your career not knowing how or if the application you’re
working on addresses the right solutions your clients need.
This is why we put so much emphasis on problem-solving at the beginning
of this book because it has to be our guiding principle as software
developers. You will be a considerably more successful back-end engineer
if you don’t forget about your users, even if they don’t directly use the code
you build.

Finding a problem to solve
The chances are that in some moment of your career as a back-end
developer, you will have to work with your team to find a new project to

work on. It could be finding a mission for your new startup or starting a
new project within your existing company. Focusing on problem-solving
will lead to a more optimal assignment of your team resources.
Most of the problems we find revolve around two possibilities: Problems
that don’t have a solution yet, and problems that do have a solution, but it is
not good enough or only works for a small group of people.
Trying to find problems without a known solution it’s complicated: it’s
human nature to try to fix things that don’t work, so either problems get
solved relatively soon, or problems remain unsolved because solutions are
complex or nonexistent. If you’re lucky to find a solution for a problem that
hasn’t been solved before, go ahead and work on it; but feel free to work on
problems that can be solved better.

Note: “Smaller” problems tend to be often ignored by developers. We
focus on finding big problems because we think it will increase our
chances of success; the more people will use the solution we build for
them, the more recognition and revenue we get. However, thinking in
terms of “big” or “small” problems is not the optimal approach.
In his talk, “Competition is for Losers” Peter Thiel talks about how
Startups that focus on niche markets have a bigger chance to succeed
just because they have less competition. Narrowing the scope of your
project to solve just one simple problem (and solve it well) leads to
having more time and resources to explore different solutions.
We should not assume that the existing solutions for known problems
are always the best approach. Problems tend to change faster than
solutions do, so implementations become outdated. Use this
knowledge to keep your mind and eyes open to new, better solutions.

Diversity is a significant point to consider when finding problems to solve.
A common problem with existing apps or solutions is that the solution they
provide only works for a specific group of users.
For instance, look at video or picture editing apps. Applications like Adobe
Premiere or Adobe Photoshop have existed for many years, but their target
has always been experienced users who have very specialized knowledge of
the field. Nowadays, thanks to smartphones and apps you can get for free,
anyone can edit photography and video with professional quality.

Many software developers assume all their users are part of the same
demographic group. Historically, software was always built for expert users
first. Innovative companies like Apple recognized the importance of
building products for non-experts; they owe their success to this
democratization of technology.
There is one simple yet powerful fact: You are not your user.
You are the expert on each app you write: It will be evident to you how to
use each feature because you wrote them and tested them daily. So, when a
user comes to you and tells you they don’t know how to use it, it can be a
bit frustrating since it’s something obvious to you.
It is a common misconception that the solution that works for you will work
for everyone. Even when you are part of the group of users your app targets,
your opinion about how the app should work is inherently biased. That’s
why it’s essential to talk with your users directly.
The more you understand how diverse your user base is, the easier it will be
for you to find their challenges and better tailor solutions for them.

Define a sample use case: The Pizza Place
ordering system.
Early in any back-end developer’s career, it’s normal to feel overwhelmed
by the lack of experience in real-world projects. At that point, most of the
projects we’ve worked on are either:

Projects for school or coding camp, where you are allowed to skip
multiple steps from the software development process due time
constraints.
Existing projects to which you joined long after the main technical
designs and decisions were made.

It’s not until later in your career that you will have the opportunity to work
on a project from its inception, finding a problem to solve and making
decisions based on your user’s needs.
Through this book, we will visit multiple techniques to build the back end
for production-level apps, and we will connect them with a narrative that

will let you get experience in areas previously unexplored for you. For that,
let’s start with the problem to solve.
There’s a small pizza restaurant called “The Pizza Place” in your
neighborhood. They only have a couple of employees today, but the
manager is a brilliant lady with a long-term vision: Build great pizzas with
quality ingredients at accessible prices. She’s worried that the pizza local
kids are buying is not healthy enough for them, so she wants to offer pizzas
cooked with clean, fresh ingredients.
The Pizza Place already offers dine-in but wants to start taking online
orders. The manager doesn’t want to lose a hefty commission to an existing
online food ordering service, so she and her husband decide the solution is
to invest in building their custom ordering app. Yes, it will be expensive at
first, but after running the numbers, they will save a lot of money in the
long run.
You and two of your colleagues have just founded a new startup focused on
helping local businesses to join the new digital era: You’re the lead back-
end developer, and the other two are a front-end developer/designer and a
salesperson.
The Pizza Place owner sees one of the ads you posted online, and she truly
believes you can help her achieve her dream of bringing great pizza to
everyone. She reaches out to you and your team to build their ordering
system. You all schedule a call to go through the details.

Defining functional and non-functional
requirements
It’s well known that one of the first steps in a new project is gathering user
requirements. We often split requirements in two:

Functional or business requirements: These are the primary goals of
the application, the things your clients care about: the main problem
and the abstract solution to it.
Non-functional requirements: This is the definition of the system
elements needed to implement the proposed solution to the functional
requirements. This covers how many servers you will need, what kind
of database, etc.

It is assumed that you have read multiple times about the differences
between these requirements, so we will not go further in those details. What
is important is that having a detailed list of requirements will help us choose
the right pieces to build the best application we can.

Tip: Mental model: Defining requirements works very similarly to the
Math concept of linear programming: You have an objective equation
you need to optimize by finding variable values that optimize a target
function, but there is an infinite combination of values you could use.
By considering a set of constraints (multiple equalities or
inequalities), we can discard all the variable values that don’t
contribute to getting the best results for our objective equation.
In our case, the system requirements are the constraints that allow us
to delimit the scope of the problem we’re trying to fix. We can find the
optimal combination of tools like databases or code libraries by
looking at the area delimited by our requirements.
While math is a common skill for software engineers, don’t worry if
you are unfamiliar with linear programming, as we will not use it in
this book. This is only an example to help build a more robust mental
model for those who have previously seen this kind of problem.

We often talk about requirements but not how to define them effectively.
Many developers expect clients to define their own functional requirements
with misguided questions like “what do you want the app to do?”.
Some clients have a good idea of what they want, but most won’t. It’s your
job as a software developer to hold their hands for this part of the process to
find the best solution for them.

An ineffective way of collecting requirements
A good starting point for understanding the process of collecting
requirements is a real example. Let us discuss the experience of a developer
(who may or may not be the author of this book) and the failures he had
early on in his career. There is no better learning opportunity than making
tons of mistakes.

A couple of years into this developer’s career, he oversaw recollecting the
system requirements for a prospective client. He contacted the client’s
company manager to schedule some meetings to define the requirements.
He scheduled three sessions out of “an abundance of caution”. To make
sure he got all the requirements right.
During the meetings, he asked the manager what he wanted the app to do.
The manager talked about how the business worked, and the developer and
his team asked all the questions they could think of. They took many notes
and drew many diagrams. By the end of the three-day business requirement
gathering, they felt like a subject matter expert in the client’s business.
Fast-forward a couple of weeks later; they start coding the application. As
they built the user interface defined in their diagrams, they started having
questions—a lot. Their questions ranged from not knowing what the
application should do in specific corner cases to having completely
misunderstood the contents of a dynamically generated report that the app
was supposed to render.
How was this developer supposed to tell his manager they had to schedule
more meetings with the client? He had set the expectation that those
meetings were all they needed. This developer’s manager had to talk with
the client to request more meetings to answer their questions, which
delayed our project.
The developer learned that he needed to set the right expectations: There
will always be more questions.

The requirement definition cycle
The definition of system requirements is an iterative process, often
interleaved with the solution design itself.
There is no magic recipe to finding all the requirements for a new project.
However, here are a few heuristics you can use to guide your path:

1. Schedule one or two meetings with the following agenda:

Find out what the problem your client is trying to solve.
Get a detailed picture of the business: Short, mid, and long-term
goals and budget constraints.

2. Request the help of one of your client’s domain experts.
3. Schedule multiple work sessions with the domain expert with the

following goals and actions:

Learn how the existing process works today.
Understand how your client is currently working around the
problem.
Build prototypes and revise requirements.

4. With the help of the subject matter expert, iterate multiple times
between prototype design and requirements definition and
clarification.

Find out what is the problem your client is trying to solve
As we’ve discussed in this chapter many times, the first thing you need to
know is what problem you’re trying to fix. If this is a project you defined
yourself, you might already know the problem, and this step is mostly done.
However, new clients will have their own business cases, which is why they
request your services. Common use cases include:

Building an application to automatize an existing process. The goal
here is to reduce costs by replacing existing manual processes that are
error-prone or time-consuming.
Build a new application to add value to existing business processes.
The goal is to create new features whose goal, in turn, is to solve our
client’s problems; things as offering a new service or product online.
Refactor an existing application. The goal is to replace (entirely or just
parts) a legacy application that is not operating as expected or it’s too
costly to maintain.

Your prospective client might not have a clear idea of what solution they
need (that is why they will pay you), but they will know the challenges they
are having. Understanding what led them to you in the first place is the first
step.

Get a detailed picture of the business

Once you know what ails your new client, the next step is to understand
who they are and their goals in the short, mid and long term.
Why do we need to understand what their long-term goal is? Can’t we just
focus on the application they want to build today? You can. It is possible to
limit your knowledge about your client to this specific problem and still
having a successful project.
But, by gaining deeper insight into your client’s business, you get two
things:

A better vision of how the application could grow and future use
cases.
The possibility of finding other areas where you can help your clients
means more business for you.

The former is especially important from a technical point of view: It lets
you better choose the tools that will not become roadblocks when future
requirements surface.
For instance, they might be using a specific billing service provider today,
but they plan to move to a different provider a few years later. This
knowledge will inform you that you must be careful not to tightly couple
the system implementation to the existing provider.

Tip: Search term: future-proofing
A term commonly used in software projects is “future-proofing”,
which means building features into your application that are not
needed today but might be used in the future.
Future-proofing is generally considered a bad practice, as it
introduces wasted effort and unnecessary complexity in your code
base by implementing features that might never be used. Dead code is
always tech debt.
However, building applications while understanding what the
requirements may be in the future is not future-proofing. We build
applications for today’s use cases using tools that will not create tech
debt for the possible use cases of tomorrow.

One thing about the business which is critical to understand is the limits
they have on the budget. It’s not the same as building an app for a billion-
user, multi-national company with millionaire budgets as building an app
for a local business with only a couple hundred users.
Budget constraints will give you much information about non-functional
requirements. If they have a limited budget, your client might be OK with
doing some trade-off between the number of servers you need and the
number of users they can have. Open-source tools may be preferred to
licensed products.
Your client may not know how to create a budget for this project; we can
guide them in creating one if we fully understand their goals, the functional
and non-functional requirements, and how to map them into infrastructure
and tools.

Request the help of one of your client’s domain-experts
Before you finish these first meetings with your new client, ask them to
assign a domain expert who understands the problem to fix. It can be the
person who is expected to use the new app or who works with the existing
process.
As you will be working closely with this domain expert, set the right
expectations: You need someone you can easily reach out to get answers to
your questions. Someone who can effectively train you in how this part of
the business works.
This part is essential, as you don’t want to make the same mistakes I did:
Wasting too much time on managers or directives in the initial exploration
phase. Or believing you have enough knowledge to be the domain expert
(99% of the time, you will not be the expert in that domain).

Learn how the existing process works today
The most effective way to collect requirements is to see how clients operate
today. With the help of your domain expert, start exploring the details of the
business operations. If possible, request permission to shadow them as they
do their daily work.
Domain experts are not necessarily specialized users. If you’re building an
exercise app, a domain expert can be someone who exercises often or a user

who would use it to get in shape.
As you watch your domain expert work, you will learn how the system
works today by asking the following questions:

How is a regular day for the person who is expected to use the app?
In which context are they expected to use it? In an office? In the gym?
What does the expert like about the current process? What do they
dislike?

As you see the domain-expert work, notice if they do any “hacks” or
“tricks” to make their job easier. These might be hidden requirements
directly related to the main problem.
Remember a key fact: You cannot improve a process you know nothing
about. You will not become an expert working on this project but relying on
a domain expert will give you enough proficiency to find all the
requirements.

Build prototypes and revise requirements
As mentioned earlier, the requirements gathering is iterative. Once you
know how the new application should work, it’s time to work on the first
prototypes.

Tip: Search term: low-fidelity prototypes and high-fidelity
prototypes

Building prototypes is part of an exploratory phase in building
applications. It’s a task that usually lays in the hands of the team’s
designer or front-end engineers, but anyone can build effective
prototypes.
Low-fidelity prototypes are roughly built sketches that only highlight
the critical functionality. They don’t include details like color, fonts,
images, or even text, as these distract from the point you want to
discuss.
Low-fidelity prototypes are good tools to use at the beginning of a
project to explore ideas and find misunderstandings in requirements.

Low-fidelity prototypes are cheap, as they can be drawn in
whiteboards, sticky notes, or even napkins you may have lying around
while having coffee.
High-fidelity prototypes are complex and range from high-definition
sketches to fully working applications. They are better for later in the
project to validate assumptions about user interaction, visual design,
and text content.
High-fidelity prototypes can be expensive, as they require time from a
designer or a software developer to create. Use them sparsely.

By creating low-fidelity prototypes as you gather requirements, you can
confirm if your assumptions about the application are correct. Finding gaps
in your mental model early on will save you a lot of effort and money in the
long run.
In this step, you want to involve your front-end developers and your
designers, as they can collaborate in creating the prototype and get answers
to questions they might have on their own.
Don’t spend too much time or effort creating these prototypes, as they most
likely will change along the way. You only want to include the essential
things you need to drive the requirements conversation further.
Figure 1.1 shows an example of a low-fidelity prototype. The low-quality
shifts focus to the use case where a user selects an item from the menu and
clicks the Order button:

Figure 1.1: An example of a low fidelity prototype.

Review your prototypes with the domain expert. They will either validate
your assumptions or tell you what you got wrong. The advantage of low-
fidelity prototypes is they can be updated relatively quickly. Using this

feedback, iterate to see how the domain expert operates and find the correct
assumption.
As you get the agreement in the defined requirements, create a central
document to include all the project facts.

Use case: Defining requirements for the Pizza Place
After spending all day at The Pizza Place, we find they want a
straightforward operation for the first application version: Display a menu
to their users on their computers or smartphones and allow them to order
food.
They are just starting with this modernization effort, so they want the
cheapest option available to service their current client load of an average
of 100 orders per day. Before you leave, the manager tells you that if the
system works fine, they will want to expand it as they get more daily
orders.
This information about their goals and budget gives us a clear picture: The
Pizza Place don’t need a distributed system with clusters of servers today,
but they are gaining clients quickly. It will not be long before the app needs
to scale, and we will account for that.
After working with the front-end developer and the cooks, you present a
collection of prototypes and requirements to the business owner.
She finds that some of your suggestions have features they don’t need in the
short-term (like allowing users to do too many customizations on their
pizza’s toppings). The Pizza Place only offers a simple menu of pizzas with
pre-selected high-quality toppings, so a customization module is extra work
they don’t need.
Thanks to working closely with the Pizza Place team for a few days, we can
define a document with all the requirements and assumptions. We use that
document as the source of truth and get sign-off from the client.
Having understood our new client’s needs, it’s time we see a menu of all the
different tools we have to satisfy these requirements.

The modern system design: a ten thousand-feet
view

Since we now know that finding solutions to our users’ problems takes
priority over choosing a tech stack, let’s look at the variety of tools
currently available for software developers at each layer of the application
development process.
The following is a high-level view of the most common elements used in
building modern applications:

Figure 1.2: Sample system architecture

Overwhelming, isn’t it? We have multiple layers like a front or a back-end,
each of which has numerous services like data storage, business logic, and
infrastructure management; each has different providers and
implementations, with their pros and cons.

Getting the front-end out of the way
Notice that we are not making a hard distinction in the picture between a
front-end and the back-end. This soft limit has two reasons:
First, this is a general view of the whole system, end-to-end.
Second, in modern development, the division line between the
responsibilities of front-end and back-end developers has become blurry,

especially in startups where both budgets and teams are small and where
most software engineers end up doing work all over the stack.
It’s common for front-end developers to work in the API or for back-end
developers to update client code to enable the features they need.
This merge in responsibilities has become so ubiquitous that it led to the
emergence of the elusive title of “full-stack developer”, which is nothing
else than a software engineer with experience in technology from both ends
of the stack.
Let’s focus on the front-end for a second. We can see that this sample
architecture supports a diverse set of clients:

Web clients (browsers like Chrome, Firefox, etc.)
Native mobile applications (Android, iOS)
Internet of Things (IoT) devices with built-in technology like
Raspberry Pi or Arduino boards.
“Smart” devices like Amazon Alexa or Google Assistant
Native desktop clients

Historically, before the general use of smart devices like phones and tablets,
traditional web applications had a strong coupling with back-end services.
Dynamic web applications would rely on the same back-end server to do
multiple things:

Fetch data from the database
Execute business logic
Transform and format data into HTML
Return the dynamically generated HTML to the browser

However, the need to reuse business logic became critical as a wide range
of modern gained popularity. The execution flow of web applications was
split in two:

An API to publish business-specific logic (which also includes
fetching data and data transformation)
A Web server to render the front-end, which calls the business API, if
needed

Mobile apps that make calls to the same API as the web application

This separation of concerns helped decouple the front and back-end
development: As long as a contract is fully established at the API level, the
back-end and the front-end can be developed in parallel. We’ll go more in-
depth on these design concerns in the chapter about (Chapter 4, Designing
APIs).
With this clean separation between the front and back end, let’s take out the
front end of the picture, and simplify it a little, so we can focus on all the
areas we will discuss in this book.

Figure 1.3: Sample system architecture

Don’t worry if you feel a bit lost. You are not expected to know each part of
this diagram, nor should you memorize it. This is just a preview of all the
topics we will discuss in this book.
Each component displayed in Figure 1.3 is a different kind of tool in our
belt. They all accomplish different goals, but only a subset of them are
required for the average app. For instance, you might not need a file storage
service if you’re not dealing with binary files in your application.

Building blocks

Web servers are in charge of receiving HTTP requests from either the
clients directly or from an external API layer. It could be just one server if
there is not much traffic, or it can be a set of multiple servers behind a Load
Balancer. We will see more details in Chapter 2, The Client-Server
Architecture.
The API layer receives requests from clients or other applications. This can
be a logical (services running on the web server) or semi-physical
(independent services running in their own servers) layer which takes care
of tasks like authorizing client requests using an authorization service. The
API layer can even limit requests or charge users for using it. We will see
more details in Chapter 4, Designing APIs.
For distributed systems, it’s common to use a queue. It allows
asynchronous communication between services. Queues provide resiliency
to the system in case individual services are down. We will get more
information about it in Chapter 11, Creating High-Performance Apps.
Logging services provide storage of operation information. Errors,
warnings, or event metrics are stored here for later analysis. Logging is one
topic that will discuss in Chapter 8, Handling Errors.
The application can be split into one or many business services. These can
also be logical or semi-physical. The whole second part of this book is
dedicated to how to build these services.
Database services provide a place to persist our application’s data. Services
like file storage are specialized types of data storage. Chapter 5, End-to-
end data management, goes in-depth about how we store and manage data.
Continuous Integration and Continuous Delivery (CI/CD) is a
methodology focused on building the infrastructure required to compile and
deploy our application. In Chapter 10, Deploying Applications, we discuss
how to leverage concepts like version control, Virtual Machines (VMs), or
containers to deploy our application as we make changes to it.
There are many other building blocks we do not include here. This omission
is not due to these components being less critical but because it would blow
up the scope of this book.
Also, notice that we’re not referring to multiple of these blocks by specific
technologies (e.g., we’re using “data storage” instead of MySQL,
MongoDB, etc.). By keeping these concepts at the right level of abstraction,

we will see common patterns those specific implementations share,
allowing us to master them all with relative ease.
Understanding the listed components will give you enough knowledge to be
a proficient back-end developer.
In the following chapters, we will dissect each component in these diagrams
along with good practices to use them to create quality applications.

Conclusion
Most of the apps we will build in our careers are tools to fix problems for
people. If the app doesn’t provide the right solution, users will abandon it.
Having this problem-solving-led vision as a back-end developer will give
you an advantage over other developers: It will guide all your technical
decisions, making you a more efficient and successful developer; more
clients will want to use the code you build, and more companies will want
you to be part of their teams because your code gets things done.
Finding problems to solve is not a simple task, but if you are proactive
enough and ask the right questions, you will find things to work on that
make a difference. Providing the right solutions to simple problems is the
path to success for the biggest technology companies.
By following an iterative process, guided by your client’s domain expert’s
feedback, you will be able to identify all the system requirements needed to
choose the right components for your application.
Modern applications have an ecosystem of components and tools constantly
evolving. More than learning the specifications of each tool, we should
focus on learning design patterns that abstract the benefits of the whole
toolset.
In the following chapter, we will dive deeply into the most ubiquitous type
of application we will build as back-end developers: Web applications.

Questions
From all the apps installed on your phone, pick one that makes your
life easier AND only solves one or two problems. Why does a solution
so specific cause an impact on you?

Have you ever downloaded an application that you immediately
uninstalled because it didn’t provide any value for you? If so, what
was it missing?
Think of three companies or startups you think are successful. What
problems did they solve when they first started? Did they focus on one
area, or did they solve more than one problem?

I

CHAPTER 2
The Client-Server Architecture

n order to become a proficient backend developer, we need to clearly
delimit what our responsibilities are. These responsibilities are strongly

defined by the architecture patterns we use while building our application.
The most prominent architecture pattern we use in backend development is
the client-server architecture. There are virtually no applications currently
being built which don’t rely on this pattern, at least in part.
This is a lesson so basic that many books assume you know everything
about it. It’s common that this assumption can easily lead to
misunderstandings on how web applications work; the most common one is
to think that HTTP and client-server is a 1:1 mapping. We’ll find that client-
server is much wider than HTTP.
In this chapter, we will discuss how the client-server architecture is
implemented in modern web-based applications, at more than one level of
abstraction.
This is not a detailed description of a specific protocol (like HTTP), even if
we include details about it. We’ll only include enough information for you
to have a strong understanding on how things work.

Structure
In this chapter, we will learn the following topics:

Architecture details

Abstraction layer: Frontend client and backend client
Abstraction layer: Data access service client, database server

HTTP: The language of the web
Implementing a web server

The main process

Serving a response
Multi-user support with multi-threading

Using a production-ready server

Enabling HTTPS in Express

Layered architecture: Fully splitting the client from the server

Splitting clients

Client versus server computing
Web servers as stateless services

Storing session data

Use Case: Applying a client-server architecture to the Pizza Place app
Client server versus peer-to-peer

Objectives
By the end of this chapter, you will have a strong understanding of how
client-server technologies work under the hood and how we can leverage
that knowledge to become a better backend developer.
You will also learn about some of the critical configurations in a web
server: Response compression and communication encryption through
HTTPS.

Architecture details
Having enough computing and storage power to accomplish tasks which
today we consider simple was prohibitively expensive a couple of decades
ago. Mostly large institutions like universities or governments owned
operational computers with high-computing resources (or at least enough
resources to provide value to their users).
Historically, the first examples of client-server architectures are based on
the need of accessing high-capacity servers remotely. ‘Dumb’ terminals
were created to allow the operation of these computers without having to be
physically present in the same room as them. These were the first clients,

and they communicated with their servers through direct connections or
private networks.
As technology advanced, clients became less ‘dumb’. Now, modern clients
have more computing power and storage capacity than most
supercomputers from the past few decades. However, the client-server
architecture is going nowhere.
Simply defined, servers are high-storage-capacity and high-computing-
power equipment that store and process most of the data related to specific
functional goals.
A client is a smaller device -with less computing resources- which is used
to access the server resources. One server can receive requests from N
clients, as shown in the following figure:

Figure 2.1: Simple client-server architecture. Multiple clients connect to a single server

As seen in the previous chapter, we can create clusters with multiple
servers, each with different functions. Even if we have multiple servers, the
definition of ‘client-server’ still holds. You can think of the whole
interaction between clients and servers as a single, abstract, large scale,
computing device. All the parts get together to become a single “server”
unit.
A common misunderstanding is to believe that the client-server only applies
to the web interface, when in reality the client-server is used as a pattern in
multiple areas of application development.

The following are a couple of examples of areas which actively implement
the client-server architecture:

FTTP (for file storage)

Client: A program that allows users to upload, download or
modify files hosted in a remote server.
Server: The server that stores the files.

Data access service client, database server

Client: Data processing service, with database adapters like
Open Database Connectivity (ODBC) or Java Database
Connectivity (JDBC)
Server: Database server

Multiple instances of the client-server architecture can be part of a single,
larger application.

Abstraction layer: Frontend client and backend
client
The most common instance of the client-server architecture is the web
application. The client role is assigned to the user interfaces (web apps,
mobile applications, IoT devices, and so on) and the server role is given to
all the services to which the user interfaces make requests to, all grouped in
a single layer of abstraction: The backend.
It’s important to notice that the role of the client can be given to user
interfaces, but not all clients need to involve direct user interaction. There
are clients which in turn are used by other servers (like database clients) to
make requests to other servers. Thinking about the user interface and client
as the same terms is a very common mistake.

Abstraction layer: Data access service client,
database server
Relational Database Management System (RDBMS) implementations
like SQL are based in a client-server architecture: A centralized data storage

server which is accessed by lightweight clients.
This model of data storage concentrates all the information in a central
service that has the role of a server. Then, multiple clients can send ‘read’
and ‘write’ requests to our database server.
Besides the obvious performance gains provided by having a server (or
cluster of servers) dedicated entirely to store data, we also get some
consistency guarantees if we assume that the database is the source of truth
for the application.
Things get a bit complex when some databases implement architectures
distinct from the client server. For instance, databases like Cassandra have
an internal peer-to-peer node distribution in their clusters. It might seem
like the client-server architecture does not apply to these kinds of databases;
but from the point of view of external users and services, the cluster of peer
nodes is still a server by itself.
The main takeaway here is that the concepts client and server are abstract:
They can have multiple instances each and still be considered a single
“client” or a single “server”.

HTTP: The language of the web
We have discussed the client-server architecture from an abstract point of
view. Now, let’s discuss the most common example of this architecture:
HTTP.
Hypertext Transfer Protocol (HTTP) enables all the communication
between client applications (both desktop and mobile-based) and the web
servers. Web Service technologies like REST and SOAP rely internally on
HTTP.
In Figure 2.2, we can see the activity diagram for the communication
between a client requesting a web page index.html and then doing a form
submission through a POST request:

Figure 2.2: Example of an interaction between a web client and a web server using HTTP

HTTP is so basic in web development that there are chances that you may
already know all the basics. But, at the same time HTTP is composed of so
many abstract concepts that it can be difficult to relate it to real-world cases
if you don’t have enough experience.
When I started my career in backend development, there was a big gap in
my understanding of how web servers extended from more basic, Hello-
World-like applications. The code we build in languages like C++ or Java
while in school or early on in my career followed a procedural approach.
The code you build for web applications, though, uses an event-driven
programming paradigm.
How does a procedural-based application become an event-driven web
application?

Tip Search terms: procedural programming and event-driven
programming

These two are very different approaches of building code. In
procedural programming, developers describe the behavior of the
program one line at a time, one step at a time, end to end.
In event-driven programming, developers create the code to react to
certain events: A user clicks on a button, a file is downloaded, a
network response is received, etc.

The glue which is in charge of translating the code between both types of
programming paradigms is hidden within the implementation of the web
server. This glue looks like magic for inexperienced developers.
If you have experience in web development, you might fully understand
how procedural applications work, or how event-driven applications work.
But chances are you haven’t seen the code that allows both to interoperate.
Because of this, in this chapter, we will build a very simple web server.
Building a server has two goals: First is to look at the internals of HTTP as
a protocol; which is more helpful than just reciting the HTTP spec. Second,
it demystifies the inner workings of web servers; which are nothing else
than regular applications which are also compiled and executed (and
procedural in their execution). There is nothing really magical inside them.

Implementing a web server
Web servers are complex pieces of software. They deal with requests from
multiple users, reading data from sockets and ports, formatting HTTP
requests and responses, and so on.
Many developers spend years in their careers not fully understanding how
web servers work internally. Chances are you will never have to build your
own web server for a production-ready application; and you don’t really
want to.
Between building your own custom web server and using one that is
commercially available, you should always choose the existing server.
There are just too many things to consider to make sure a server is
production-ready, so it’s better to rely on products which have been widely
tested before.
Having said that, we will implement a web server just to build a stronger
mental model. As soon as you see that the basic operation of a web server is

actually really simple, you will feel more confident of your knowledge
about building backend code for web applications.

Note: About mental models
Exercises which might seem a bit unnecessary at first (like building
your own web server when you will almost never want to use it in a
production app) are useful for building a strong mental model.
A mental model is our understanding of how something works.
Mental models do not only apply to software, as you can have a
mental model of how a car works, how your coffee maker works, or
how a bureaucratic process works.
When your mental model about a thing is extremely detailed, you can
easily diagnose when something wrong happens within the thing itself.
You can understand its strengths and weaknesses, and design
improvements.
If you want to become an expert in any field, strive for building a
strong mental model of the inner workings of what you want to study.
You should be almost capable of imagining each part in detail such as
a map or schematic.

We will first build a single-threaded version of the server. Then, with a
couple of simple steps, we will extend the example to use a thread pool to
allow multiple concurrent requests.
We’ll use Java for this example, importing only base libraries. No
frameworks or external products. If you’re not familiar with Java, rest
assured that there is not a lot of Java-specific code and almost every
language has network libraries that will allow you to do this.

The main process
From a simplified, high-level view, a web server is an infinite loop which
constantly reads a server’s socket. For example, we expose the socket at
localhost or 127.0.0.1, and a specific TPC port which is not currently used
by the server, in this case, port 8080.

Note: Anatomy of a server: TCP/IP, ports, and sockets
TCP/IP is a network protocol used to interchange information. It’s
used by HTTP to direct requests and responses to and from a web
server.
Web servers can be identified by their IP address (and the domain
name which resolves through DNS to that IP, e.g., google.com).
Multiple services can be exposed in the same server, each using a
specific port. The combination of an IP address and a port is known
as a socket.
Ports are numbered and the first 1024 are assigned to well-known
services. For instance, HTTP is commonly routed through port 80 and
HTTPS through port 443.
Ports above 1024 are not pre-assigned and can be used by your
application for exposing custom services. For instance, during
development, a common port used for HTTP is 8080, but it can easily
be exposed using any other port like 8081, 8082, etc.

Localhost
When a service starts running in a server, it’s usually accessed by its
public IP address and a specific port.
However, you can call a service from within the same server it’s
running on by using the “loopback” IP address instead of its public
address. The loopback address in a server is always 127.0.0.1, and the
DNS alias is ‘localhost’.
So, if you’re inside a production server running a web application like
example.com, you can make a request to localhost:80 and you should
see the exact same web page.

As long as the main process keeps looping, the server will be up. Let’s take
a look at the main process:

1. import java.io.*;
2. import java.net.ServerSocket;
3. import java.net.Socket;
4. public class Server {

5.
6. final private static int PORT = 8080;
7.
8. public static void main(String[] args) throws Exception {
9.

10. try (ServerSocket serverSocket = new ServerSocket(PORT))
{

11. while (true) {
12. try {
13. Socket client = serverSocket.accept();
14. handleClient(client);
15. }
16. catch(Exception err) {
17. err.printStackTrace();
18. }
19. }
20. }
21. }
22. }

In each iteration, the main process will check the socket to see whether a
request has been made. Once the client makes a request,
serverSocket.accept() will return an instance of a socket client which
will contain the stream of data for a user request.
It’s important to mention that serverSocket.accept() is a blocking
operation. The execution will reach that line of code and it will pause until
it receives an incoming request. Once the request is received and processed,
a new loop will happen and (unless there is an error) the server will pause
again at serverSocket.accept() in the next iteration.
Once a request is received, the handleClient function will be called:

1. private static void handleClient(Socket client) throws

IOException {

2.
3. // Get the input stream
4. BufferedReader br = new BufferedReader(
5. new InputStreamReader(client.getInputStream())
6.);
7.
8. List<String> requestsLines = new ArrayList<>();
9.

10. String line;
11.
12. // Read all lines in the request until you find a blank

line

13. do {
14. line = br.readLine();
15. requestsLines.add(line);
16. } while(!line.isBlank());
17.
18.
19. // …
20. }

The socket client has a getInputStream method, which returns the contents
of the request. This is a stream of bytes, but since we know this is an HTTP
request, we can interpret those bytes as text.
We can read the socket’s input stream using a BufferedReader. The reader
has methods that allow us to convert the input stream into an iterator which
in turn reads the request one line at the time.
We iterate through the lines of text in the request until we find a blank line
which marks the end of the request.

Note: BufferedReader has methods that return a Java Stream instead
of an iterator. While this can be useful in certain cases, keep in mind

that the input stream will not close itself. It will stay connected until
the client navigates away, closes the browser, or times out the request.
In those cases, the BufferedReader stream methods will hang until the
client closes the connection, even if a blank line is returned in the
response’s stream.
The Java Stream API was introduced in Java 8, and if you’re a Java
developer and you want to learn more about it, you can check the
‘Java Stream API’ link in the documentation section for more details.

At this point, you can add a debugger breakpoint inside handleClient, run
the program, open a browser window, and navigate to
http://localhost:8080/index.html.
Once the execution reaches the break-point, you can see the HTTP request
in the list of strings we gathered from the input stream:
GET /index.html HTTP/1.1

Host: localhost:8080

Connection: keep-alive

Cache-Control: max-age=0

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131

Safari/537.36

You might see some slightly different values or extra headers not included
in this example, which define things like caching, authentication, session
management, etc. These might be dependent of your local environment, like
the type of browser you used to make the request.
The first line in the request follows a specific format where we indicate the
verb or action to perform, the request target or resource to apply that action
to, and the HTTP version.
There are 9 different types of verbs which can be used; the most common
ones being GET and POST. Different combinations of a verb with the same
resource can indicate distinct types of operations.
A POST or PUT request would look like the GET request we just saw, with
the addition that the request can include a body below all the headers. This
body can be binary data, XML, JSON, etc.

We will visit these verbs in more detail and see how to use them in Chapter
3, Designing APIs.

Serving a response
Having received and parsed a request from the client, it’s time to do
something with it. Keep in mind that, from the moment the server receives
the client’s request, the client will wait for a response; so we better act as
fast as we can.
We will support the following two different operations:

Return a static HTML file: This emulates the behavior of servers
like Apache or nginx that return static files to the client when
requested. Other static files to serve could be JavaScript, CSS, image,
or video files.
Return a dynamically-generated HTML response: This is a
common way in which web application technologies like Java Servlets
or PHP work. They build the response in run-time based on the
information given in the request.

In order to support these two cases in our example, we need a condition to
indicate the server when to execute each. Just for the sake of this example if
the client requests /dynamic.html, we will return a dynamically-build
response. For any other resources, we will try to fetch the requested static
file (e.g. index.html). If the file doesn’t exist, we return a 404 Not Found
error:

1. final private static String DATE_FORMAT_NOW = “yyyy-MM-dd
HH:mm:ss”;

2. final private static String DYNAMIC = “/dynamic.html”;
3. final private static byte[] NOT_FOUND_HTML = “<h1>Not found

:(</h1>”.getBytes();

4.
5.
6. // …continuation of handleClient
7. // Parse the requested path from first line in the

request

8. String[] requestLine = requestsLines.get(0).split(“ “);
9. String path = requestLine[1];

10.
11.
12. Path filePath = Paths.get(“.”, path);
13.
14. // if the path requested is dynamic.html, print today’s day
15. if(DYNAMIC.equals(path)) {
16. sendResponse(client, “200 OK”,
17. “text/html”,
18. getDynamicResponse()
19.);
20. }
21.
22. // else, print static file
23. else if (Files.exists(filePath)) {
24. sendResponse(client, “200 OK”,
25. Files.probeContentType(filePath),
26. Files.readAllBytes(filePath)
27.);
28.
29. // else, print error message
30. } else {
31. sendResponse(client, “404 Not Found”,
32. “text/html”,
33. NOT_FOUND_HTML
34.);
35. }
36. }
37.

38. private static byte[] getDynamicResponse() {
39. Calendar cal = Calendar.getInstance();
40. SimpleDateFormat sdf = new

SimpleDateFormat(DATE_FORMAT_NOW);

41. String response = String.format(
42. “<h1>Dynamic response</h1> Today is %s”,

sdf.format(cal.getTime()));

43.
44. return response.getBytes();
45. }
46.
47. private static void sendResponse(Socket client, String

status, String contentType, byte[] content) throws

IOException {

48.
49. String LINE_BREAK = “\r\n”;
50. OutputStream output = client.getOutputStream();
51. output.write((“HTTP/1.1 “ + status).getBytes());
52. output.write((“ContentType: “ + contentType +

LINE_BREAK).getBytes());

53. output.write(LINE_BREAK.getBytes());
54. output.write(content);
55. output.write((LINE_BREAK + LINE_BREAK).getBytes());
56. output.flush();
57. client.close();
58. }

Inside handleClient, we check the resource to fetch. We rely on the
VERB-RESOURCE-HTTP_VERSION structure we mentioned earlier to
extract the resource name. If the requested resource is “/dynamic.html”,
we will dynamically generate HTML to display the current time and date:

1. String response = String.format(

2. “<h1>Dynamic response</h1> Today is %s”,

sdf.format(cal.getTime()));

This might be a very simple example of dynamically generated HTML, but
in practice, you will probably fetch data from a database, convert it to a
format which can be understood by your users, and then convert it into
HTML.
For the static file route, we will create a file with the name index.html, and
put it in the same folder where our server is going to run:

1. <body>
2. <h1>Static Response</h1>
3. This is index.html
4. </body>

The sendResponse function takes care of formatting the response headers
and rendering the content into the socket’s output stream. The stream reads
arrays of bytes, so we convert the text we want to return in our response to
bytes (using the conveniently-included method getBytes, part of the
String class).
Having created the two resources, we can access them through a browser.
Open a new browser window and request
http://localhost:8080/index.html to fetch the static response. The
browser should display a text message as displayed in Figure 2.3:

Figure 2.3: localhost:8080/index.html

In a similar way, we can access the resource that dynamically generates
HTML by opening another browser window and navigating to
http://localhost:8080/dynamic.html. You will see the same text as
shown in Figure 2.4:

Figure 2.4: localhost:8080/dynamic.html

You can print the response directly in the server, or you can use your
browser’s developer tools to see it:
HTTP/1.1 200 OK

Access-Control-Allow-Origin: *

Connection: Keep-Alive

Content-Encoding: gzip

Content-type: text/html; charset=utf-8

…

<html>

…

The format for the HTTP response is as follows: The HTTP version, then
the status code, and then a status text. The actual content of the response (in
this case, the HTML for index.html or dynamic.html) is returned below
the response headers.
Notice how the stream of bytes the server returns can be parsed back to a
string. There is no magic here: We converted text to bytes in the server, and
we can parse them back to text again.

You can keep using your browser to test our server endpoints, but many
developers like to use curl. You can request both the resources by running
the following commands in terminal/bash:
curl localhost:8080/index.html

curl localhost:8080/dynamic.html

Each of these commands makes an HTTP request (using GET by default) to
the given URLs.

Note: About curl
The Bash command ‘curl’ is an open-source command line tool for
transferring data with URLs. Developers use it commonly to make
requests to remote servers.
If you’re using a Unix-based computer like Linux or MacOS, `curl` is
already installed in your system. If you’re running Windows, there
are multiple sources from where you can install curl:
- Git bash, which is included in Git for Windows
- Package managers like Chocolatey, MSYS2, Scoop, Cygwin

Multi-user support with multi-threading
Since our server is running using a single thread, if one of those requests
were to take a long time to fulfill (for example, doing a long database
query), the next request will have to wait in line for the first to complete
before continuing.
Looking at our code, this means that the execution inside our main function
will pause at two points: On serverSocket.accept() while it waits for a
new request to be made, and on handleClient while it waits for that
function to complete.
Visualizing asynchronous execution can be difficult, but we can directly see
how this problem works by adding an artificial delay to our code of 10
seconds and printing the current time in seconds right after the delay
finishes:

1. private static void handleClient(Socket client) throws

Exception {

2. Thread.sleep(10000);
3.
4. System.out.println(“ Current time in seconds: “ +
5. Instant.now().getEpochSecond());
6. //…

After adding that code to handleClient, call
http://localhost:8080/index.html two times in a row (it can be in two
different browser windows, or two parallel ‘curl’ calls). If you’re using tow
browser windows, try to make both requests as fast as you can.
Take a look at the text messages we’re printing in the server’s console.
Notice how each request is exactly 10 seconds from each other.
curl localhost:8080/index.html & curl

localhost:8080/index.html

Current time in seconds: 1629241268

Current time in seconds: 1629241278

Requests will stand in a queue waiting for the previous one to finish,
regardless of how fast one is executed after the other.
As you can probably tell, this is obviously a bad situation. We want users to
be able to make requests to our server concurrently. Imagine if this is how
sites with millions of users like Facebook or Google operated, where each
server can only serve one user at the time.
For enabling support for multiple concurrent users, we can extend our
server to use more than one thread.
Adding multi-threading to our server is straightforward. To execute the
code in a separate thread in Java, we need to create a new class which
extends the Runnable interface and implement the public void run()
method.
We will move all the code which currently sits in handleClient into
public void run(). Since we cannot pass parameters to run, we will pass
Socket client in the constructor for the new class, as follows:

1. class ServerHandler implements Runnable {
2.
3. private Socket client;

4.
5. public ServerHandler(Socket client) {
6. this.client = client;
7. }
8.
9. public void run() {

10. // the contents of handleClient

Then, on our infinite loop, every time we receive a new request, we call
ServerHandler as a separate thread:

1. public class HttpServerMultiThread {
2.
3. static ThreadPoolExecutor executorService =
4. (ThreadPoolExecutor) Executors.newCachedThreadPool();
5.
6. final private static int PORT = 8080;
7.
8. public static void main(String[] args) throws Exception {
9. try (ServerSocket serverSocket = new ServerSocket(PORT))

{

10. while (true) {
11. try {
12. Socket client = serverSocket.accept();
13. // Call ServerHandler’s run function in a separate

thread

14. executorService.submit(new ServerHandler(client));
15. }
16. catch(Exception err) {
17. err.printStackTrace();
18. }
19. }

20. }
21. }
22. }

Creating new threads consume memory and resources, so we don’t want to
generate an infinite number of threads. We use a thread pool
(ThreadPoolExecutor) so Java can reuse threads instead of always creating
new ones for each request.
If we don’t want to use a thread pool for this example, we can always create
the threads manually as follows:

1. new Thread(new ServerHandler(client)).start()

This means that our main function now will only pause in
serverSocket.accept(); once the execution reaches the new
ServerHandler(client) class, the main thread will not stop and wait for
the request to be processed and the response to be served. The execution
will immediately move back to wait for new requests in
serverSocket.accept().
Now, re-run your server and repeat the experiment where we called
/index.html two times at simultaneously. Notice that now the difference is
less than 10 seconds. In this example case, the difference is ~2 seconds,
which is the time it took to manually fire the second request after the first,
using a browser:
Current time in seconds: 1629242176

Current time in seconds: 1629242178

If you use curl to execute both the requests in parallel, you will notice that
both the values will be equal, which means the difference between requests
is less than a second, even with the 10 second-delay in the code.
All the code required to serve a client’s request is being done in a separate
thread than the one which is waiting for connections and running the server
itself.
This new multi-threading server is a lot more similar to production-ready
servers. It can handle requests from multiple users without blocking each
other. Yet, we still wouldn’t want to use it for a real application because
then you would have to manually implement features like encryption
(HTTPS/TLS/SSL) or response compression (gzip). While implementing

these features yourself is possible, you will need to dedicate extra resources
to make sure they follow the standards correctly and they are bug-free.

Tip Search term: gzip
Modern web servers use gzip by compressing the responses they
return. As seen, HTTP responses can be long strings of text, with
multiple white spaces or repeated words (think of HTML elements
like <body>, you will have at least two strings with the value “body”
for opening and closing tags). Taking advantage of this repeated
information, we can apply encryption to remove repeated data and
reduce the size of requests and responses.
Encryption services like gzip compress the responses so they can be
transmitted faster to the client. The client then de-compresses the
response and parses it.
Servers like Apache provide compression services out of the box. In
the case of Apache, you can enable mod_gzip in the configuration file.

Using a production-ready server
Now, let’s take a look at an actual server you can use to build production-
ready applications. Instead of sticking to Java, let’s take a look at the
NodeJS Express server.

Note: Traditionally, Java web applications have been deployed by
packaging them in WAR files, which then are deployed to
independent web servers like Tomcat or Glassfish.
From the past few years, Java web applications started to be built
with embedded servers like Jetty using frameworks like Spring Boot
or Play. Many applications (especially Docker-based ones) strive for
applications with embedded servers.
Both deployment technologies are valid; each with its own set of
complexities.

Express is a popular framework used to build web applications in Node.js.
Express works as an embedded server, which means that you don’t need to

start a separate server to execute your application, instead, it all runs in a
single process -similarly to our custom-made example web server-.
Assuming you have installed Node.js in your computer, create a new Node
project and install Express with the following commands:

1. npm init
2. npm install --save express

Then, create a new index.js file with the following JavaScript code:

1. const express = require(“express”);
2. const app = express();
3. const port = 8080;
4.
5. app.use(“/static”, express.static(“public”));
6.
7. app.get(“/”, (req, res) => {
8. res.send(“<h1>Hello World!</h1>”);
9. });

10.
11. app.post(“/”, function (req, res) {
12. res.send(“Got a POST request”);
13. });
14.
15. app.listen(port, () => {
16. console.log(`App listening at http://localhost:${port}`);
17. });

This small application is doing a few things:

Creating an instance of an Express server, and keeping a reference to it
in the variable app
Creating a mapping for static files hosted in the folder/static
Creating a mapping for both GET and POST requests for the route /

Starting the server in the port 8080 and showing a success message
once the server completes initialization

Notice that this piece of JavaScript code is very similar to the code for our
custom made server in Java. However, notice some important differences:

Express follows a fully event-driven programming approach: We
define ‘callback’ functions to execute on different events like getting a
GET/POST request, or when the server starts. As mentioned earlier,
the procedural part of the server is hidden inside the server’s
implementation.
We don’t have to manually parse the input stream for the request.
Express takes care of doing the parsing for us, and passes the resulting
object to our handlers (in the function’s first parameter).
We don’t have to convert strings to bytes in order to return them in the
response. Again, Express takes care of that with res.send().
For rendering static files like index.html, we don’t need to manually
read each file from the server. app.use(‘/static’,

express.static(‘public’)) takes care of linking a specific sub-
route to a folder in the server, mapping URL paths to file names.

We can see one of the advantages right out of the box when we try to enable
the response compression in Express:

1. var compression = require(“compression”);
2. var express = require(“express”);
3. var app = express();
4. app.use(compression());

If we wanted to enable compression in our own custom server, we would
have to implement it ourselves: check the request headers and see whether
the compression should be enabled in the response, in addition to actually
compress the response using something like gzip before returning it back to
the client.

Enabling HTTPS in Express

HTTP requests and responses are nothing else than text being sent back and
forth through the network between the client and the server. Sensitive
information like authentication tokens, session tokens, or any information
within the requests themselves will be sent in plain text.
Anyone connected to a network can use a packet sniffer (a tool to read all
traffic in the network) and read the request and responses of the clients
connected in the same network.
HTTPS provides an encrypted channel so clients and servers can
communicate securely. All traffic is encrypted; and while the encryption
itself is not enough to keep malicious users from accessing sensitive data,
it’s definitely better to use HTTPS than HTTP. Besides, most of the search
engines like Google will penalize your site if it’s still running in HTTP.
We can definitely add code to our custom server to enable HTTPS.
However, the list of the requirements that a server needs to comply with in
order to fully support HTTPS is long, and would take longer than we can fit
in this chapter. If you’re interested in looking at these requirements, take a
look to the “RFC 7230 - Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing”.
The advantage of using a production-ready server is that someone else
already took care of implementing the list of requirements for HTTPS, so
all we need to do is to provide an SSL certificate that will be used to sign all
encrypted requests.
SSL certificates provide information to clients about the authenticity of the
server. It provides identity information that is validated by a Certificate
Authority (CA).
There are a couple of ways to get an SSL certificate:

Create a self-signed certificate using OpenSSL.
Buy a SSL certificate for your domain using one of the many hosting
providers out there.
Get a free SSL certificate for your domain using letsencrypt.org.

If you buy your certificate or use LetsEncrypt, your vendor would provide
you with the steps to get the required certificate and key files for your
application.

Note: LetsEncrypt versus paid certificates
Paid certificates typically provide more levels of validation (supported
by a Certificate Authority) than LetsEncrypt, and they can give a
better sense of protection to your clients and better placement in
search engines.
LetsEncrypt is built so that the small projects can protect their data
for free; hence, it’s great for websites without a lot of sensitive data
like blogs or personal sites.
If you plan to get a certificate for your business, consider buying one.

Self-signed certificates are useful for development environments. They are
not great for production deployments, though, as the client will get
warnings about self-signed certificates not being enough to validate the
server’s identity.
If you have OpenSSL installed, you can generate a self-signed certificate
with the following command:
openssl req -nodes -new -x509 -keyout server.key -out

server.cert

Once you have a valid certificate and keys, the following code will enable
HTTPS in your Express application:

1. var express = require(“express”);
2. var fs = require(“fs”);
3. var https = require(“https”);
4. var app = express();
5.
6. app.get(“/”, function (req, res) {
7. res.send(“hello world”);
8. });
9.

10. https
11. .createServer(
12. {

13. key: fs.readFileSync(“server.key”),
14. cert: fs.readFileSync(“server.cert”),
15. },
16. app
17.)
18. .listen(3000, function () {
19. console.log(
20. “Example app listening on port 3000! Go to

https://localhost:3000/”

21.);
22. });

Notice that the code for the HTTPS-enabled server is only slightly different
from the HTTP server. Express is taking care of all the details for
encrypting requests and responses.
Web application servers encapsulate all the boilerplate logic required to
handle HTTP requests and responses. As we can see with the Express
server, they provide a place for you to put your own code. This abstraction
allows you to concentrate on building business logic instead of having to
take care of implementing HTTPS for every project.

Layered architecture: Fully splitting the client
from the server
Traditional web servers had the responsibility of storing/processing data,
and rendering the application’s HTML. This was the only approach
available to build dynamic web applications with a technology like PHP.
The following PHP script queries a list of products from a database and
renders an HTML with a table containing the results:

1. <?php
2. $servername = “localhost”;
3. $user = “johndoe”;
4. $pass = “Admin123”;

5. $dbname = “products_db”;
6.
7. // Connect to the database
8. $conn = new mysqli($servername, $user, $pass, $dbname);
9.

10. $query = “SELECT id, product_title, product_description

FROM Products”;

11. $query_result = $conn->query($query);
12.
13. if ($query_result->num_rows > 0) {
14. echo “<h1> Products </h1>”
15. echo “<table>”
16. echo “<tr><th>ID</th>

<th>Title</th> <th>Description</th></tr>”;

17. // output data of each row
18. while($row = $query_result->fetch_assoc()) {
19. echo “<tr><td>”.$row[“id”].”</td>

<td>”.$row[“product_title”].”

“.$row[“product_description”].”</td></tr>”;

20. }
21. echo “</table>”;
22. } else {
23. echo “No products to display”;
24. }
25. $conn->close();
26. ?>

The following is a step-by-step explanation of what this script is doing:

Make a request to a MySQL database to retrieve the list of names
from the table MyGuests.
Retrieve the list of results from the query.

If the list of results is empty, display a 0 results message. Else,
dynamically create an HTML table with the results and render it.
Return the generated HTML.

This approach is a bit different from the ones we’ve seen in our custom web
server and in the Express server. PHP follows a fully procedural approach.
If you need to hire a developer to maintain an application which is built
with a bunch of scripts like the PHP one we just saw, what kind of
developer would you hire? A frontend developer? A backend developer?
The coupling between front and backend in that application would make it
really difficult for teams of front and backend developers to collaborate
successfully.
There is a strong coupling in this script between the presentation layer and
the business layer. Of course, a production-ready application wouldn’t use a
single script, but even if you split it into multiple files, nothing enforces a
clear separation of concerns.

Tip Search term: Separation of concerns
This design pattern is closely related to the Single Responsibility
Principle in Object Oriented programming.
The idea is that each unit of code should only have a defined goal or
responsibility. Code with similar goals would be put in the same place.
Separating your code by the concern they address simplifies your
project. Finding the correct categories of concerns for grouping your
code is something you have to do based on your specific case or
domain knowledge.

Also, while these kinds of scripts kind-of worked in the past when we only
had browsers as clients, what would you do if you wanted to support native
mobile apps? You would have to either rebuild the application or build
something completely different.
One approach to solve this thigh-coupling between front and back end is to
use a layered architecture, as shown in the following figure:

Figure 2.5: Layered architecture.

In some literature, the business and services layers are separate, and we
have an extra data access layer after the persistence layer. The idea is just to
organize your applications by the concerns they address.
In the layered architecture, we organize our applications in layers such as:

Presentation layer: All code related to display and format data for the
end user.
Business/Services layer: All code related to transform data to the
expected format to accomplish all functional requirements.
Persistence layer: All code related to the interaction with the external
data storage: Saving and retrieving data. It translates data from the
format in which it is stored into a format that can be used by the
business and service layers (e.g. relational tables to Java classes).

Note: The layered architecture as presented in most books and
educational resources might not be the best distribution for all
projects. The most common use of layered architecture is in
monolithic applications, and in such, things like deployment or
scalability can be cumbersome.
Actually, many resources even set up the layered architecture as a
strict alternative to client-server. This is a very opinionated and
pragmatic approach, as we can build client-server applications that
also follow a layered architecture..
The main takeaway from there is that the separation of concerns
allows our developers to work independently and in parallel.

Be flexible while implementing architecture patterns, and apply the
concepts from these architectures which make sense for your specific
case.

How do you actually split your code? It depends on the technology,
framework, or even language you’re using. The idea is to split your code in
a way that allows teams work independently without blocking each other.

Splitting clients
One advantage of the separation between the presentation and the business
layers is that we can not only have a layer in our server for the presentation
code, but we can also extract it completely from the web server.
In modern development of client applications, the presentation code is build
and deployed independently from the server code. For instance:

Web applications projects using tools like React or Angular, deployed
to their own web servers.
Native mobile applications created with tools like Swift for iOS or
Kotlin for Android, and deployed to app stores for clients to install
them directly in their devices.

This separation of concerns is great! You can hire teams of web, Android,
or iOS developers and they can work in parallel to API and server-side
developers.
All you need to do in order to guarantee that this independence holds in
place is to create well-defined contracts between the web server and these
presentation-based clients. We will visit this concept of contracts in Chapter
3, Designing APIs.

Client versus server computing
A common interview question is: Considering the power of modern clients
and current servers, where should you do most of the processing work for
an application?
The answer like in every question that deserves to be asked is it depends.

The advantages of shifting processing work towards the client are as
follows:

Less latency: Since clients don’t need to make requests to the server
for any operation, they can save all the time used in network calls and
improve the user experience.
Less load for the server: The server is more performant and will be
able to support more clients.
Increased privacy: Dealing with sensitive personal data becomes
easier as your user’s personal information never leaves their devices;
you don’t have to worry about things like encryption in traffic.

The disadvantages, of course, are as follows:

Low consistency: Certain sensitive operations (like bank transactions)
require high consistency requirements. It’s not possible to fully
perform these kinds of transactions in the client’s device, as they need
to be consistent with the information of all other users.
Access control concerns: There are certain resources that cannot be
sent securely to a user’s device. Sensitive information from other users
in the system might be required for the operation, and that information
can only be safely operated in the server.
Performance concerns: Some operations might be too
computationally heavy for a client device.
Version fragmentation: Not all client devices run the same client
version. Some browsers are outdated and some Android devices run in
previous OS versions. Since we cannot guarantee that all clients run in
the latest versions of their software, not all of them will have the same
feature set available. A good example is all the browser-compatibility
issues which have plagued web developer since decades ago.
Variable client performance: Similar to version fragmentation, not
all devices have the computing power to perform memory-intensive
operations. Also, the more we shift operations into the client, the more
power it will require, causing battery problems in mobile devices.

Moving business logic into a client should be done in an as-needed basis. A
good rule of thumb is to start by putting all the business logic in the server

and slowly move pieces of logic into the client, as it makes sense.
The features that would bring the biggest performance gains are those that
are mostly constrained by network latency and that don’t require a lot of
processing power to be executed.
An iterative approach will give you more control and better insight into
which pieces of logic do bring a positive impact to your users.

Web servers as stateless services
By design, HTTP is supposed to be stateless. This means that the HTTP
server itself is not expected to keep track of any state information; the
server won’t remember whether a client has done a request before, or if a
request is related to another.
By having HTTP servers being stateless, they can be treated like
interchangeable resources. This provides multiple advantages:

Better performance: You can create a cluster of multiple servers
running the same web application. Then, put a Load balancer in front
of them to redirect client’s requests to any of the servers in the cluster,
following something like Round-robin.
Better availability: If you have a cluster of stateless servers, if any of
the servers fails, you can easily replace it with a new one, without
worrying about backups.

If servers are stateless, how do we keep track of user sessions?
We have designed workarounds to make it seem like HTTP stores the state.
Some of those tricks are as follows:

Keeping track of a user session by sending a session token in each
request through cookies.
Calling a web API sending authorization tokens in each request to
allow the server to know which user is making the request.

In each request, the HTTP server will validate the token as if it was the first
time it received it. It doesn’t matter which server in the cluster received the
request; all of them perform the same action.

These workarounds are embedded in the way our clients work. Browsers
store the session cookies and make sure users don’t have to input it in each
web page they visit.

Storing session data
Certain applications are required to store data that is either too big or too
sensitive to be passed back and forth between the client and the server in
each request. In those cases, we want a way to persist the state of a user’s
session.
Some developers feel tempted to store this session state in the same server;
either in an in-memory structure, a local file, etc. And they even work
around the way Load Balancers function by creating “sticky sessions”:
Once a load balancer directs a request to a server, it will redirect all further
requests from the same client to the same server.
Keeping storage in the web server itself is not optimal, as it prevents load
balancers from distributing requests evenly across servers in a cluster, and
in case of server failure, you will probably lose that state (unless you add an
extra strategy to back it up before the failure happens).
So, where do you keep the session data?
Low-durability caching services like Redis address this kind of problem:
they offer a storage service which is external to the HTTP servers
themselves. Each server stores the session state in the same Redis cluster. If
the HTTP server fails, a new server can be deployed and connected to
Redis. Redis is fast enough that it has almost no downsides when compared
to the local in-memory local storage.
We will discuss more data storage strategies in Chapter 5, End-to-end Data
Management.

Use case: Applying a client-server architecture to
the Pizza Place app
Let’s take a look at two of our functional requirements for the Pizza Place
app:

Users should be able to see the menu on their phones or computers.

The menu should be updated by the managers at the Pizza Place so
that the users can only make orders of pizzas for which they have
ingredients in stock.

From requirement number one, we can deduce that we want to build both a
mobile app and a web app. This means that we will have to support at least
three different clients: Web, Android, and iOS.
From the second requirement, we know that the information given by the
app to the users’ needs to be frequently updated (at least a couple of times a
day). This means that the clients will need to fetch the most up to date menu
from somewhere, instead of keeping the menu as a static website.
From these two simple requirements, we can see that we need to rely on a
client-server architecture, instead of doing something like static, purely
client-based apps.
Now, let’s review the first non-functional requirement we have:

The application should be as small as possible to correctly serve the
small user base the Pizza Place has right now.

We know that we are building a small application that is expected to grow.
This means that we have the flexibility of hosting the whole application in a
single server; but we also have to structure it so it can grow once it’s
needed.
For this, let’s apply a modified version of the layered architecture. Since we
need multiple clients, let’s completely split the presentation layer into
independent client applications (one project for web, one for native mobile).
Now, for a large application, we would also split the business, service, and
persistence layers into their own servers. However, our current requirement
points us to put everything in a single server. So, a healthy balance is to
create logical layers.
This means that we will create a single project for these three layers, but we
will split the code into functions or classes grouped by each of the layers.
This will create a healthy separation between code for business
functionality and code for data persistence.
As mentioned earlier, don’t get caught in rigid definitions of these
architectures. They are recipes we can tweak and adapt to our specific use
case.

The overall application structure for the Pizza Place application is shown in
the following figure:

Figure 2.6: High-level view of the architecture for the Pizza Place application

We are using this design for the first version of our application because it
addresses all our requirements and we are still taking advantage of the
benefits of the client-server and layered architectures.
The logical layers approach allows us to iterate faster, as we don’t have to
worry about managing multiple servers or projects. The logical separation
still separate concerns and, as our application grows, these layers can be
extracted into their own servers as needed.

Client server versus peer-to-peer
Before we complete reading this chapter, it’s important to acknowledge the
existence of alternative architectures. Peer-to-peer (P2P) architectures
differ from the client-server architecture in the fact that here each node in
the network is both client and server.

In Figure 2.6, we can see the topology of a typical P2P network with five
peers:

Figure 2.7: Example of a Peer-to-peer architecture. Peers connect to each other

Data storage and processing is distributed across multiple clients or peers.
A client connects directly to its peers to fetch data they need, and if for
some reason the peer goes down, the client can connect to any other peer in
the network.
The main benefit of P2P is that it is a decentralized architecture. It means
that there is no single server that can be a bottleneck or a single point of
failure.
Another benefit is that you don’t need servers with tons of memory to host
an application, as the computing is distributed among the peers. This could
be a very powerful architecture for collaborative work.
The most famous implementations of P2P are BitTorrent and Blockchain.
BitTorrent enables file sharing among all the peers in the network, and
Blockchain makes copies of the ledger of transactions in each peer.
It’s curious to know that the adoption of both of these in the public has
proved to be controversial at times, due the potentially gray areas that the
use of these protocols brings with them: The lack of centralization also
means that no single entity can regulate the application’s content.
There has been some exploration about implementing HTTP as a P2P
protocol, as well as possible P2P-based replacements. However, there is so

much infrastructure in place that already relies on HTTP and the server-
client architecture that it’s not easy to find a suitable replacement.
For better or for worse, HTTP is here to stay for the near future.

Conclusion
The client-server architecture is the base on which web applications are
built. This architecture model has enabled easily sharing with people the
resources or data that is concentrated in a central computer.
The client-server architecture is used in multiple layers within our
applications: In HTTP, in database server connections, in mobile apps,
FTTP clients, etc. User interfaces are only one type of client, and anything
that connects to a server can have the role of client.
We saw the inner workings of a web server implementing HTTP: how to
build the main process for a server, how to listen for requests and provide
responses. We also reviewed some examples on the kind of resources we
can return to clients from a server, either static or dynamic.
We discussed HTTPS, SSL certificates, and the importance of enabling
them in a web server. Production-ready servers like Express provide a
simple interface to configure horizontal concerns like encryption or data
compression in server responses. No modern web application should ever
be deployed to production without enabling HTTPS first.
We looked at how legacy web applications can combine multiple concerns
in single source code files, like common PHP examples, resulting in highly
cohesive teams of developers that cannot work on the application in
parallel.
We talked about layered architectures and how they try to address a better
separation of concerns. And, taking a step further in separating presentation
concerns into its own project, we end up with the architecture followed by
modern client applications developed for web, Android, or iOS. Client
applications run in their own projects and can be deployed independently
from the server which implements business logic.
Balancing the implementation between business logic between clients and
servers require fine tuning, as there are trade-offs between putting too much

logic in each side. If you want to err on the safe side, most of the time the
server should contain the majority of the business logic.
We understood that web servers should be built and deployed as stateless
resources. The lack of state at the web server level allows us to discard and
spin new instances of the server; or to seamlessly split requests evenly
across multiple servers in a cluster.
Lastly, we talked about some alternative architectures like peer-to-peer. P2P
architectures can perform better than client-server for cases where data
needs to be de-centralized.
Having a strong understanding of how HTTP works; we now have most of
the tools required to take a deep dive into the topic of designing and
building APIs, which we will discuss in the next chapter.

Questions
Can a software application be both client and server? Why?
What is the role of load balancers in clusters of HTTP servers?
What are the advantages of processing information directly at the
browser or mobile applications?
What are the advantages of using a layered architecture? Can you
think of a use case where it might not work great?
What would happen if we store the user session in the web server and
that server crashes? What would the user see?
Given that HTTP is stateless and we send authentication tokens in
each request (usually through cookies), what would happen if we used
unencrypted HTTP and someone could read our request information?
How would a malicious person use that sensitive information?

References
Java Stream API:
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.
html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

RFC 7230 - Hypertext Transfer Protocol (HTTP/1.1): Message Syntax
and Routing
https://datatracker.ietf.org/doc/html/rfc7230
Free SSL certificates at LetsEncrypt
https://letsencrypt.org/

https://datatracker.ietf.org/doc/html/rfc7230
https://letsencrypt.org/

A

CHAPTER 3
Designing APIs

ny communication between two entities requires some level of
agreement between both. If one person speaks to another, there is an

assumption that both persons share a language (and a common context) that
would allow them to decode the meaning of the words the other person is
saying. Without this agreement, words are just noise. Languages allow us to
encode and decode this noise into meaningful concepts.
This agreement also exists between elements in a computational system
who try to communicate. At the lowest level, we have protocols like
TPC/IP or UDP, which dictate a contract on how two computers
communicate in a network: The sequence of steps required to establish a
connection, the agreed structure for the packets to be sent back and forth,
and so on.
Computers receive streams of bits sent by other computers. Network
protocols provide a blueprint on how to group these bits into data structures
that have a meaning for the computer and its users. These blueprints are the
“language” computers speak.
At a higher level, communication between two computers (a client and a
server, for instance) has protocols that allow sending complex data back and
forth, like HTTP. We have seen how client-server architectures rely on a
shared contract that describes how HTTP requests and responses should be
structured. As long as clients and servers both follow the predefined
contracts, they will be able to communicate successfully.
In an attempt to create more complex contracts, techniques like REST and
SOAP have been created on top of HTTP. They can be grouped in the
concept of web services but in the past few years, they have also been
labeled as “APIs”.
In this chapter, we will discover all you need to know about APIs. Since
“API” is a very abstract concept, we will disambiguate the most common
use cases.

We will also discuss the most currently popular implementation of web
services: REST. We will review some best practices for designing clean
REST APIs and how REST services contrast against other protocols like
SOAP and gRPC.
Then, we will discuss how APIs provide flexibility in distributed
applications and how they can be leveraged independently from the front-
end clients which consume them.

Structure
In this chapter, we will learn the following topics:

What is an API?

Functions as contracts

Interfaces and design patterns
Remote APIs: RPC, SOAP, REST, GraphQL

Building a remote API with RPC/gRPC
SOAP and web services

Building REST APIs

Actions versus HTTP request methods
Relationships
Versioning
Caching

Effective REST APIs: HATEOAS

Building APIs with GraphQL

Building standalone APIs

Standalone API: Headless CMS
Standalone API: Public APIs

Use case: Designing a remote API for the Pizza Corner

Objectives

After reading this chapter, you will be able to understand the different types
of programming interfaces and their uses. You will know the advantages of
using interfaces and APIs to abstract out implementation details. Also,
you’ll understand the use cases and differences between the major tools to
build remote APIs: REST, RPC, SOAP, and GraphQL. You will have a
basic understanding of how to write and design effective APIs that are
flexible enough for multiple clients to consume.

What is an API?
An Application Programming Interface (API) is a contract that defines
all the information needed for two software-based entities (functions,
applications, servers, etc.) to communicate with each other.
Every API describes the following two basic things:

A list of models describing the expected format of the data to be
transferred in the API’s actions.
The actions that are available to be performed on with those models or
entities.

Some specific types of APIs will have other characteristics (for example,
REST APIs define an HTTP verb to be used, SOAP defines an XML
structure, and so on) but in the end all APIs share at least these two
requirements.

Functions as contracts
At the lowest level, you can think of function signatures as a part of an API.
For instance, the std package in C++ provides a function to_string. If you
look it up in C++’s documentation, you will find a list of method signatures
like the following:
string to_string (int val);

string to_string (float val);

string to_string (double val);

string to_string (long double val);

Notice that these signatures contain the following two basic requirements
we require for an API:

The expected format of the function input: float, double, among
others.
An explicit list of the allowed operations (for example, convert an
input into a string).

How does the std package implement each one of these functions? We
don’t know, and most of the time, we don’t care. We have the guarantee
that, as long as you call the function with the expected parameters, you will
receive back a string representation of the input.
Of course, you could go and look for the source code of ‘std’ and find the
implementation, but you don’t need to know it in order to use the function.
Just think of all the standard library functions you have used in your code
for which you have never seen their implementation.
It’s safe to assume that the list of function signatures is the API of the
std::to_string package. It might seem a bit redundant that each function
is called exactly as the package that exposes them, but this is more a design
decision for this specific example than a problem with our definition of
API.

Interfaces and design patterns
In some coding languages, the concept of API is distilled as a component of
the language itself. In Java and C# we have interfaces: A special structure
that defines a contract. In general, the interface cannot be used directly and
a concrete class needs to implement it.
Here is an example of a simple C# interface:

1. interface ISampleInterface {
2. void SampleMethod();
3. }
4.
5. class ImplementationClass : ISampleInterface {
6. // Explicit interface member implementation:
7. void ISampleInterface.SampleMethod() {
8. // Method implementation

9. }
10.
11. static void Main() {
12. // Declare an interface instance
13. ISampleInterface obj = new ImplementationClass();
14. // Call the member
15. obj.SampleMethod();
16. }
17. }

In the preceding example, the interface ISampleInterface is defined with a
single function SampleMethod. The function has no parameters and returns
no value.
Interfaces are one of the purest examples of an API. Notice how the
implementation only defines the method signature, with no body. If you
tried to instance ISampleInterface directly, the compiler would give you
an error.
For this reason, we will create a concrete class ImplementationClass that
implements the ISampleInterface interface. C# (as well as Java) requires
any concrete class implementing an interface to also implement each
function in the interface. That’s the reason why ImplementationClass
defines a body for void ISampleInterface.SampleMethod().
Java’s example is very similar:

1. interface ISampleInterface {
2. void SampleMethod();
3. }
4.
5. class ImplementationClass implements ISampleInterface {
6. @Override
7. void SampleMethod() {
8. // … basically the same body

When first learning interfaces as part of Java or C#, many people ask
themselves: Why go through the trouble of defining an interface if I will
have to define each function again in the concrete class? It’s a natural
question, as it seems like a waste of effort.
The answer is that we can write multiple implementations for the same
interface, and those implementations can be used interchangeably. As long
as consumers use the interface directly, they don’t care which
implementation they are getting. Let’s look at an example.
Let’s say we want to define a service to store an Order object in a database.
Today, we will use a MySQL database, so our OrderService class gets an
instance of the MySQLService to save the data.
The following is an example service called OrderService that shows how
the application uses MySQLService to persist Order objects:

1. class MySQLService {
2. boolean saveOrder(Order order) {
3. // …
4. }
5. }
6.
7. class OrderService {
8. MySQLService dbService;
9.

10. public OrderService(MySQLService dbService) {
11. this.dbService = dbService;
12. }
13.
14. void processOrder(Order order) {
15. // do things to the order, then save it:
16. this.dbService.saveOrder(order);
17. }
18. }

19.
20. class App {
21. void newOrder() {
22. OrderService service = new OrderService(new

MySQLService());

23. // get new order, process it and store it…
24. service.processOrder(order);
25. }
26. }

Notice how we are passing MySQLService through the OrderService
constructor, instead of calling the MySQLService constructor inside
OrderService’. This is called inversion of control (IoC), and it help us
remove a strong dependency between both classes.
Continuing with our example, a few months later after we discover we need
to migrate the MySQL database to a MongoDB database. Taking advantage
of the IoC pattern, we create a new service called MongoDBService and
we inject it to the OrderService.
The following is the class definition of MongoDBService:

1. class MongoDBService {
2. boolean saveOrder(Order order) {
3. // …
4. }
5. }

Having used IoC made this change a bit easier, but we still need to update
both App and OrderService to use this new service class. This means that
we have to update every line of code where MySQLService is defined and
used.
If we had relied on interfaces, this migration would have been a lot simpler.
The following code shows an interface-based implementation of
DbService:

1. interface DBService {

2. boolean saveOrder(Order order);
3.
4. //… other methods, maybe like getOrder
5. }
6. class MySQLService implements DBService{
7. boolean saveOrder(Order order) {
8. // Do SQL stuff…
9. }

10. }
11.
12. class MongoDBService implements DBService{
13. boolean saveOrder(Order order) {
14. // Do Mongo stuff…
15. }
16. }
17.
18. class OrderService {
19. DBService dbService;
20.
21. public OrderService(DBService dbService) {
22. this.dbService = dbService;
23. }
24.
25. void processOrder(Order order) {
26. // do things to the order, then save it:
27. this.dbService.saveOrder(order);
28. }
29. }
30.
31. class App {

32. void newOrder() {
33. // Use one implementation…
34. OrderService s١ = new OrderService(new

MySQLService());

35. // …or the other
36. OrderService s٢ = new OrderService(new

MongoDBService());

37. s1.processOrder(order);
38. s2.processOrder(order);
39. }
40. }

The consumer uses our DBService API directly. Then, the concrete
implementation is passed to the constructor of OrderService. This is a
pattern known as dependency injection, which is just a more specific
version of IoC.
We can swap the implementation any time, or even have two instances of
OrderService using different implementations of DBService. We can create
more implementations without ever needing to update OrderService.
The assurance here is that, as long as OrderService follows the contract
defined in the interface, any service that implements that same contract will
work as expected. These implementations can be local functions, clients for
remote APIs exposed by other servers, or even test mock functions. The
consumer doesn’t need to know which implementation they are using.
The use of APIs at the programming interface level allows us to implement
some of the most common Gang of Four’s structural design patterns:

Adapter pattern: It allows two incompatible classes to work together
by wrapping an interface around one of the existing classes.
Facade pattern: It provides a simple interface to a more complex
underlying object.
Proxy pattern: It provides a placeholder interface to an underlying
object to control access, reduce cost, or reduce complexity.

All these patterns rely on interfaces introducing an abstraction layer that
removes complexity or incompatibility of a consumer with other services.

Remote APIs: RPC, SOAP, REST, and GraphQL
When we think of APIs, there’s a good chance we are thinking of executing
code running in a remote machine. The simplest case we might think of is
having a web or mobile client that makes a request to an “API”, which in
turn is hosted in some remote server.
Using our previous definition of API, a remote API is a server that exposes
an interface for clients to read and consume, but the communication
happens through a network.
In our previous example, boolean saveOrder(Order order) was declared
and implemented in the same application as the client that consumed it.
What if, instead, we wanted to save the data in a database running in a
remote database?
Just as we could swap implementations to use MySQL or MongoDB
without having to update the client service, we can create an
implementation that makes a request to an external server. This is known as
Remote Procedure Call (RPC).
The following figure is a high-level view of the multiple implementations
of DBService:

Figure 3.1: Defining multiple implementations for a programmatic interface

RPC allows the code to make requests to external servers by calling RPC
functions which are no different from regular, local functions (like boolean
saveOrder(Order order)). RPC implementations abstract away all the

logic required to communicate with the external server so the developer can
focus on writing business logic.

Building a remote API with RPC/gRPC
There are many implementations of RPC, from Java’s Remote Method
Invocation (RMI) or Common Object Request Broker Architecture
(CORBA), all the way to the newer gRPC.
However, at its core, RPC can be done with a simple HTTP
implementation. For instance, to support an RPC version of saveOrder or
getOrder that relies on HTTP, you can create the following endpoints:
POST /api/saveOrder

GET /api/getOrder?id=123

Now, you can create an implementation for DBService which makes
requests to those endpoints:

1. class RemoteDBService implements DBService{
2. HttpClient httpClient;
3.
4. boolean saveOrder(Order order) {
5. // create http request from order
6. // …
7.
8. HttpResponse<String> = httpClient.post(
9. HttpRequest request =

HttpRequest.newBuilder().uri(

10. URI.create(“https://pizzaplace.com/api/save
Order”))

11. .header(“Content-Type”,

“application/json”)

12. .POST(orderRequest)
13. .build()
14.);
15.

16. // do something with the response
17. }
18. }

This is the power of programming interfaces. We can not only change the
type of database out application uses almost seamlessly, but also we are
able to migrate from using a local implementation to make requests to an
external server. All without changing the code that calls saveOrder.
“Hold on”, you might say. “I’ve seen this before. This is not RPC, this is
REST!”
It is a very common misconception to think that making any HTTP requests
to a server using a few distinct HTTP verbs is REST. Actually, the most
popular instance of RPC in the recent years, gRPC, relies internally on
HTTP/2 for communication. To these web endpoints that look suspiciously
close to a REST API we call them ‘RESTful services’. Protocols like OAuth
rely on RESTful calls without being fully REST.
Without proper context, it’s easy to get confused about the differences
between the multiple tools we have to build remote APIs. For example,
there is the notion that RPC is an outdated and undesirable way of building
APIs. This is far from being true.
In reality, RPC is a pattern very useful for building modern applications.
Maybe it wasn’t as widespread a few years ago because most
implementations of RPC where vendor or language specific (like Java’s
RMI), while SOAP and REST started to allow developers to integrate
applications built in different tech stacks. But the popularity of new
protocols like gRPC or Thrift has given a new breath of fresh air to this
pattern.
To underscore its advantages, let’s leave aside HTTP and REST for a
second and focus on a specific example of modern RPC: gRPC.
Figure 3.2 shows the communication flow between a gRPC server and the
client making a remote call to the SayHello(…) method:

Figure 3.2: Example of a gRPC request

Relying on Protocol buffers (protobuf), gRPC creates an interface using the
language definition proto3, which defines models and actions. These
simple models are then processed to auto-generate the code to be used by
both the server and the client to communicate.
The following is an example of a protobuf interface model:

1. syntax = “proto3”;
2. package helloworld;
3. option go_package = “models/helloworld”;
4. option java_package = “com.example.grpc”
5.
6. message Message {
7. string body = 1;
8. }
9.

10. service HelloService {
11. rpc SayHello(Message) returns (Message) {}
12. }

Here, we are defining a helloworld.proto file that contains one single
remote method, SayHello, and a model called Message.
The other options described at the top of the file are metadata which
protobuf will use when generating code; for example, go_package is used
for creating a Go module while generating the Golang code, and
java_package gives a package name to the generated Java classes.

Tip: Search term: protobuf

A protocol buffer is a library built to serialize data. It relies on the
creation of models and actions written with the language “proto3”
which is a definition language similar to XML or JSON.
This library can generate code based on the models built in proto3. It
also has plugins that allow you to generate code for creating clients
and servers using gRPC.

We can build this model using any of the supported languages. For instance,
you can generate the gRPC client-server code for Java with the following
command:

1. protoc --java_out=api --plugin=protoc-gen-grpc-java

proto/helloworld.proto

This will generate the com/example/grpc/Helloworld.java class inside
the api folder. There are plugins that integrate protoc with common
frameworks like Maven or Gradle, which will allow you to generate the
API’s code as a part of your application compilation workflow.
Alternatively, you can run the following command and generate a Golang
version of the same interface:

1. protoc --go_out=plugins=grpc:api proto/helloworld.proto

This command will generate a Go file called helloworld.pb.go inside the
api/models/helloworld directory, just as the helloworld.proto file
described.
This generated code is not meant to be edited directly. If you want to make
changes, update the model and regenerate the code. Otherwise, you risk
other developers (or yourself) overwriting your changes when they re-
generate the API’s code.

Build the gRPC server
Let’s use Golang to build both a client and a server for a gRPC API.
Assuming you have a basic set up of Go installed on your local
development machine, create a module go.mod with the following
definition, which includes all the required dependencies for gRPC:

1. module example.com/grpc

2.
3. go 1.17
4.
5. require (
6. golang.org/x/net v٠.٠.٠-٢٠٢٠٠٨٢٢١٢٤٣٢٨-c٨٩٠٤٥٨١٤٢٠٢
7. google.golang.org/grpc v١.٤٠.٠
8. google.golang.org/protobuf v١.٢٧.١
9.)

10.
11.
12.
13. require (
14. github.com/golang/protobuf v١.٥.٢ // indirect
15. golang.org/x/sys v٠.٠.٠-٢٠٢٠٠٣٢٣٢٢٢٤١٤-٨٥ca٧c٥b٩٥cd //

indirect

16. golang.org/x/text v٠.٣.٠ // indirect
17. google.golang.org/genproto v٠.٠.٠-٢٠٢٠٠٥٢٦٢١١٨٥٥-

cb٢٧e٣aa٢٠١٣ // indirect

18.)

If you don’t want to create a module, install each dependency manually
using the go get command:

1. go get google.golang.org/grpc@v1.40.0

Then, create a file called server.go. This file will contain the code for the
gRPC server Then, add the following code to server.go:

1. package main
2.
3. import (
4. “fmt”
5. “log”
6. “net”

7.
8. helloApi “example.com/grpc/api/models/helloworld”
9. “golang.org/x/net/context”

10. “google.golang.org/grpc”
11.)
12.
13.
14. type ServerHandler struct {}
15.
16. func (s *ServerHandler) SayHello(ctx context.Context, in

*helloApi.Message) (*helloApi.Message, error) {

17. log.Printf(“Receive message body from client: %s”,

in.Body)

18. return &helloApi.Message{Body: “Hello From the

server!”}, nil

19. }
20.
21. func main() {
22. fmt.Println(“Starting gRPC server!»)
23.
24. listener, err := net.Listen(“tcp”, fmt.Sprintf(“:%d”,

9000))

25. if err != nil {
26. log.Fatalf(“Error with server connection: %v”, err)
27. }
28.
29. s := ServerHandler{}
30.
31. grpcServer := grpc.NewServer()
32.
33. helloApi.RegisterHelloServiceServer(grpcServer, &s)

34.
35. if err := grpcServer.Serve(listener); err != nil {
36. log.Fatalf(“Error serving response: %s”, err)
37. }
38. }

If you’re not proficient in Golang, don’t worry. This code is simple enough
that you can understand the most important parts without a strong
knowledge of the language. But, if you want to feel more comfortable with
the code, take 20 minutes to check out the website “A tour of Go” at
https://tour.golang.org. That should be more than enough knowledge to
fully understand this example.
This sub-module server.go is part of the main module example.com/grpc
(which we defined in go.mod), so all our local code will be imported from
that package name.
In the line helloApi “example.com/grpc/api/models/helloworld”, we
import models/helloworld from the main example.com/grpc package.
Again, models/helloworld is the code we generated with the protoc
command.
We define a structure called ServerHandler that will contain all the code
used by the server to handle the API requests. In this case, the structure has
a single method, SayHello which just prints a message in the log and
returns the string “Hello From the server!” back to the consumer.
The RegisterHelloServiceServer function was created by protobuff’s
gRPC plugin, and all we have to do is give it an instance of *grpc.Server
and an instance of the ServerHandler to create a server.
If we compile and run this Go application, a server will start in the
localhost:9000. For example, the following steps compile and run the server
in a Unix-based OS (MacOS, Linux, etc):

1. > go build server.go
2. > ./server
3. Starting gRPC server!

If you’re running in a Windows-based system, go build server.go will
create a server.exe file that you can run.

Build the gRPC client
Now, in order to consume our RCP API, we need to create a gRPC client.
The code for the client is as simple as the code for the server:

1. package main
2.
3. import (
4. “log”
5.
6. “golang.org/x/net/context”
7. “google.golang.org/grpc”
8.
9. helloApi “example.com/grpc/api/models/helloworld”

10.)
11.
12. func main() {
13. var conn *grpc.ClientConn
14. conn, err := grpc.Dial(“:9000”, grpc.WithInsecure())
15.
16. if err != nil {
17. log.Fatalf(“did not connect: %s”, err)
18. }
19.
20. defer conn.Close()
21.
22. c := helloApi.NewHelloServiceClient(conn)
23.
24. response, err := c.SayHello(context.Background(),

&helloApi.Message{Body: “Hello From client!”})

25.
26. if err != nil {

27. log.Fatalf(“Error when calling SayHello: %s”, err)
28. }
29.
30. log.Printf(“Response from server: %s”, response.Body)
31. }

The important parts of the code can be split in two snippets. First, we
connect to the remote API server that is running in localhost:9000:

1. //…
2. var conn *grpc.ClientConn
3.
4. conn, err := grpc.Dial(“:9000”, grpc.WithInsecure())
5. //…

Since this is just a demo, we can use grpc.WithInsecure() to allow the
gRPC client know that we will not use authentication or encryption in this
connection.
In our second snippet, we have the code which actually executes the remote
procedure SayHello and prints the response:

1. //…
2. c := helloApi.NewHelloServiceClient(conn)
3.
4. response, err := c.SayHello(context.Background(),

&helloApi.Message{Body: “Hello From client!”})

5.
6. log.Printf(“Response from server: %s”, response.Body)
7. //…

Notice how, for the client, the second code snippet looks just like as if you
were executing a local function. The type of response is
*helloApi.Message, which is one of the auto-generated classes we created
using the protobuf model.

If you compile and execute the client, you will see a message in the server
like 2021/09/06 13:03:30 Receive message body from client: Hello
From Client!, and a message in the client’s log similar to 2021/09/06
13:03:30 Response from server: Hello From the server!.

When to use gRPC
Data transmission in gRPC is extremely efficient, as data is serialized and
deserialized using binary data, unlike REST or SOAP which tends to use
the text-based formats JSON and XML.
Notice also that the main idea behind RPC is that a local function
implementation is moved to a remote server, “hiding” from consumers that
it’s actually a remote call.
RPC creates a tight coupling between the client and the server. Since we are
abstracting functions from the client into the server, the API we build with
RPC has a low level of abstraction, exposing more implementation details
than other types of remote APIs like REST.
The tight coupling between producers and consumers makes RPC ideal for
communication in environments of distributed systems -like in
microservices architectures- where all the elements in the system interact
with each other as if they were making calls to local functions.
One disadvantage of that tight coupling is that RPC has low discoverability,
which means it’s difficult for clients to figure out what kind of operations
they have available to call. We have to rely on the assumption that the API
owner will provide compiled clients, or at least consumers will have a list
of all the remote functions, and that they fully understand what each
function’s name means.
A situation which illustrates the discoverability challenges for RPC is that
of an API that has two separate functions (for instance, saveOrder and
createOrder) that might behave differently in specific contexts, but they
offer no good description about their differences. It’s not easy for
consumers to figure out which function will work best for their use case.
Clear and updated documentation becomes a critical part of RPC;
otherwise, people will not read it and fail to adopt your API.
In general, naming conventions (or the lack of thereof, as naming things is
hard!) is one of the biggest obstacles for clients to adopt RPC APIs. RPC

APIs end up having increasingly complex methods like
getOrderForRegularCustomer or getOrderForPreferredCustomer (we
have to expose more functions as we need to support new use cases) which
require consumers to always have up-to-date knowledge about the
implementation details and context of the server to know which function to
call.

SOAP and web services
We will not go in depth on the topic of Simple Object Access Protocol
(SOAP), simply because it’s not so commonly used anymore for new
projects. However, we still need to acknowledge it exists so we can contrast
it with other options.
When talking about application design, the concept of API is usually used
interchangeably with the idea of web services: A few years ago, web
services were a synonymous of SOAP services.
SOAP is a messaging protocol commonly built in top of HTTP (some old
implementations relied in SMTP) which defines XML contracts for
communication between two remote services.
The consumers discover all the available operations using a Web Services
Description Language (WSDL) file. The WSDL file defines an XML
structure for the incoming and outgoing data used by each operation.
The following is just a part of the WSDL definition file for an operation
called sayHello which receives a String as input and returns another String
as output:

1. …
<message name=”sayHello”>

2. <part name=”parameters” element=”tns:sayHello”/>
3. </message>
4.
5. <message name=”sayHelloResponse”>
6. <part name=”parameters”

element=”tns:sayHelloResponse”/>

7. </message>

8.
9. <portType name=”HelloWorld”>

10. <operation name=”sayHello”>
11. <input

wsam:Action=”http://example.com/HelloService/sayHelloReques

t” message=”tns:sayHello”/>

12. <output

wsam:Action=”http://example.com/HelloService/sayHelloRespon

se” message=”tns:sayHelloResponse”/>

13. </operation>
14. </portType>
15. …

In every request, the consumer will create an XML envelope (with a similar
format to the XML described in the WSDL), fill it with the request
information for each parameter in the request, and send it to the provider’s
endpoint.
SOAP shares many characteristics with gRPC: Both have a definition file
which declares all methods, models, and payload types used by the API
(proto3 for gRPC, WSDL for SOAP). Both have libraries which can
generate code for clients and servers from their definition files.
However, unlike gRPC, SOAP doesn’t serialize all requests and responses
into binary data. It sends these bloated XML documents, which increase the
network traffic size, making the communication “chatty”.
Also, since WSDL files are difficult to build manually, developers usually
build the models using the code in a specific language like Java, and then
generate the WSDL from those same code models; then, they that same
WSDL model to generate clients in other supported languages.
Due some of its advantages we will discuss next, REST slowly overtook the
web service market away from SOAP. But mostly, people saw in REST a
less complex, less chatty option for building remote APIs.
When would you use SOAP? Probably in legacy systems which need
support. It’s rare nowadays to have development teams choosing SOAP for

building new projects, as most of the time REST, GraphQL or gRPC have a
better performance than SOAP.

Building REST APIs
Representational state transfer (REST) is the most ubiquitous type of
remote API at the time this book is written, and it has been for some years.
The use of REST is so common that many developers confuse the concept
of API as a whole with REST. Many people use these concepts
interchangeably when, as we’ve seen, they are not equal.
REST is a pattern built in top of HTTP to allow communication back and
forth between servers and their clients; usually using JSON-formatted
strings to serialize and deserialize data in traffic.
REST gained popularity in a time where developers were struggling with
maintaining their SOAP services. Debugging, monitoring, and inspecting
traffic in SOAP services was a headache, and the leaner, human-readable,
JSON-based traffic seemed to be a better alternative.
REST exposes a list of resources. These resources are abstractions of real-
life elements like orders or users, or concrete things, like products, cars,
food, among others. These resources are represented as URLs exposed by
the API server.
Then, we use elements of the HTTP specification to act on those resources.
We use HTTP methods to describe and perform actions on our resources;
and HTTP codes to describe the result of such actions.
By abstracting resources, we create a layer that separates the API from both
providers and consumers. As long as they follow the REST patterns,
consumers and providers can use their own naming conventions on the
functions used to make and handle the API requests, reducing the coupling
between them.
Resources can be defined as models of attributes. We can use JSON to
express the model definition for a resource. For instance, a model for Order
can look as follows:

1. Resource: Order, URI: /order, Model:
{

2. id: “123124”,

3. items: […],
4. created_by: “John Doe”,
5. created_on: “2009-06-15T13:45:30”,
6. total: 34.12,
7. …
8. }

By combining a resource URI with a HTTP method, the client can perform
all the available actions for that given resource:
OPTIONS /order

GET /order

PUT /order

POST /order

PATCH /order

DELETE /order

Just as any HTTP request, each action in our API is defined as the function
(HTTP_VERB ENTITY_URI) -> HTTP_STATUS. For instance, to use the Order
API for creating a new order, a client would make a ‘PUT /order’ request.
The API then would return one of a few possible statuses as the response:

HTTP 201 Created: The order was created successfully.
HTTP 500 Internal Server Error: There was an error creating the
order.
HTTP 405 Method not allowed: Creating orders is not a supported
operation.

The following is a visual representation of the communication flow of the
PUT /order request:

Figure 3.3: A PUT request which successfully creates a new order

Notice how we take the existing HTTP features and we repurpose them. We
give them a new meaning based on our API’s business logic. Response
codes like Created have different meanings depending on which resources
they’re paired with.
What is the difference between REST and plain HTTP? The answer is “not
much”. REST is not a framework, nor a protocol. REST is just an
architectural pattern that uses a large subset of HTTP to enable the
integration between applications; and as such, it needs to follow the same
principles of HTTP, like being stateless and cacheable. At the same time,
REST can take advantage of the years of improvements we have built for
regular HTTP requests.

Note: In the previous chapter, we discussed HTTP as being a stateless
protocol, which means each request needs to include all the required
information to understand the request, without relying on the web
server to store a context.
Another HTTP principle is that requests need to explicitly declare if
they can be cached or not -aiming to being cacheable as much as
possible- as cacheable resources increase the performance of the
HTTP service.

Actions versus HTTP request methods

One of the goals of REST is to express as much as possible using existing
HTTP features, as an alternative of having to expose concrete functions.
For instance, instead of making a POST request to a /deleteOrder endpoint
to remove an order, we would send a DELETE request to the /order
endpoint. This simplification allows consumers to execute different actions
using just one single endpoint.
The use of a single endpoint for multiple actions reduces the uncertainty for
consumers. If they want to cancel an order, they don’t have to guess if the
function they need to call is named /deleteOrder or /removeOrder. As
long as they know that the endpoint /order exists, they can assume that
DELTE could be available (or use the verb OPTIONS to check what actions
are available for the endpoint).
REST relies on HTTP methods to express intent over a resource:

OPTIONS: Retrieve a list of the HTTP methods available for this
resource.
GET: Get one or many instances of the resource.
PUT/POST: Create a new instance of the resource.
PATCH: Partially update an existing instance of the resource.
DELETE: Remove an existing instance of the resource.

Tip: Search term: idempotency
Idempotency means that an action will only take effect once, even if
called multiple times. Calling an idempotent function multiple times
should render the same results after the first call. The implementation
of HTTP methods like OPTIONS, GET, and PUT are expected to be
idempotent.
POST is a non-idempotent operation, which means that calling a
POST method multiple times could potentially end up in multiple
side-effects and different results in each call. Some literatures call
non-idempotent methods “unsafe”.
Idempotency is a critical term for HTTP. Clients assume that
idempotent operations will behave as such, and they will allow cases
were a request can be sent more than once, simultaneously.

This list of HTTP methods is enough to express most of the actions that can
be done on a resource. Some other HTTP methods are less common, but
can also be used by REST, if it makes sense for the specific use case.

Note: Both PUT and POST can be used for creating new instances of
a resource, POST being most commonly used.
The difference between both is that PUT is assumed to be idempotent,
so making the same request multiple times should result in just
creating one single instance of the resource. POST doesn’t have such
limitations.
If the client is relying on the server to generate information such IDs
or names, POST is a better option. If all the information is provided
by the user in each request, PUT has a clearer intent. If you choose
PUT, make sure that your implementation works as expected.
Choose whichever works best for you, just be consistent.

It’s important to notice that these are the most common uses for each HTTP
verb. Some APIs can choose to implement just a few of them, or do some
slight variations. Always implement HTTP methods as defined by the
HTTP specification, and return consistent and clear messages, especially for
errors.
There are use cases where an API needs to expose an action that cannot be
satisfactorily expressed using a combination of HTTP methods and a
resource. In these cases, you can rely on query parameters.
Let’s think of an example. If you want to fetch a list of orders, filtered by
year, you can add a query parameter to rely this information to the GET
action:
GET /order?year=2021

You can also express things like sorting by a specific attribute of the
resource.
GET /order?orderBy=price

Query parameters offer a lot of flexibility, as you can use as many as you
need and they are not tied to specific names or values. Because of this same
flexibility, try not to over-use them or you will lose some of the benefits of

REST’s standardization. For instance, the following are examples of not-so-
optimal implementations:
POST /order?action=delete

POST /order?action=getMembershipAndOrder

Query parameters should extend the tools given by HTTP, not replace them.

Naming resources
Resources are at the center and front of the REST API design. Naming
resources and their endpoints is a critical part of designing APIs.
Resources should ideally be a single noun like “order”, “membership”, or
“product”. As we discussed earlier, resource names should not include
verbs like “delete”, “create”, or “find”, otherwise you would be defining
RESTful endpoints more suitable for web-based RPC.
Following an object-oriented perspective, resources can be seen as classes;
blueprints that can have multiple instances. To identify and retrieve specific
instances, you can attach an identifier to the URI, as shown here:
/membership/23

/order/123124

Keep in mind that these identifiers need to be encoded in the URL and
clients will use these URLs to access the resources, so exceptionally long
and complex identifiers might reduce the usability of your API.

Singular versus plural
A common question when naming resources and their URIs is: Should you
use singular or plural when naming your resources? Should it be /order or
/orders? The answer is determined directly by the type of actions you will
perform with the resource and the level of expressiveness you want to
define.
For instance, GET /orders has a different intent than GET /order. The first
retrieves a list of orders while the second makes no sense if the first one
exists. However, DELETE /orders/123 may also make no sense, as /orders
assumes it works with collections, not specific instances.
Instead of having to support both singular and plural endpoints, many
developer teams choose to adopt a single endpoint for most of the actions.

It’s a chosen trade-off that brings simplicity without losing much
expressiveness.
You can choose to use singular nouns for naming all your resources, as in
the following example:
GET /order -> fetch a collection of orders

GET /order/123124 -> fetch a single order

Relationships
Resources can be related to each, and we can design our API to express
these relationships. Looking back to our orders example, multiple orders
can be assigned to a specific membership.
This relationship should first be expressed in the model of the order
resource itself:

1. {
2. id: “123124”,
3. membership: “23”,
4. …
5. }

This follows a pattern similar to creating 1:N relationships in SQL entities.
The child model contains a reference to a specific instance of the parent
resource, which can then be used to retrieve the parent’s data.
We can name our resource’s URIs to also express this relationship by
nesting the child entity into the parent’s URI:
/membership/23

/membership/23/order/123124

Notice how the URI makes explicit the relationship between both entities.
You cannot retrieve an order that is not linked to a membership. On the
downside, in addition to the order ID, you need to know an order’s
membership ID in order to retrieve an order; that might not always be
possible or optimal.
Actually, there are cases where relationships can be too complex to express
using a single URI; think of resources which are deeply nested. In those

cases, it’s better to have separate, specific URIs for each resource and
express the relationship only using the content of the resource’s model:

1. GET /order/123124
2. Result:
3. {
4. order_id: 123124,
5. membership: 23
6. …
7. }

While this approach might provide less context to consumers, it’s a good
trade-off to avoid having really long and complex URIs.
As seen in these past couple sections, REST conventions are there to make
your life easier, not the opposite. It’s important to be flexible enough to
know when a good practice creates more problems than the ones it fixes,
and it should be dropped.

Versioning
As flexible as a REST API can be, there will be a moment when it needs to
evolve and make changes which can break the contract we have with
existing consumers. Since breaking contracts is one of the worst things you
can do with an API, we need to introduce breaking changes through
versioning.
The most common way of versioning REST API is by adding the version
information in the URI, like /v2/order/123124. If a new version of the API
needs to be created, it’s published to a new URI starting in /v3/, while
keeping deployed an instance of the previous version v2. In that way, clients
which are using the resources in /v2/ will still have access to the previous
version of the API, while at the same time clients who migrate to v3 can
access the newer version.
The downside of this approach is that you have to create a whole branch of
the API to support a new version: there is no way to upgrade only the
resources which broke the contract. Most of the time, introducing new
versions requires clients to change the URI in all instances of their code

base, as there is no easy way to integrate new with older versions. Also,
URIs keep getting long and complex.
The second approach is to introduce a custom header for clients to indicate
the API which version they can support:

1. curl -H “Accept-Version:

2.0” http://www.example.com/api/order/123124

2.
3. 200 OK
4. Version: 2.0

The advantage of this approach over adding a version to the URI is that our
URIs are clean. Clients will always make request to the same URIs.
Once clients upgrade their code to support all breaking changes, they can
start sending a different value in the header. This also means that, resources
which don’t need to be moved to a new version because weren’t changed
don’t need to be exposed in a new URI. All they have to do is return their
latest version if the requested version is equal or larger:

1. // Membership didn’t need to be updated, so its latest

version is still 1.0, so the API returns that one, even if

a larger version was requested

2.
3. > curl -H “Accept-Version:

2.0” http://www.example.com/api/membership

4.
5. 200 OK
6. Version: 1.0

Requesting specific versions through custom headers allows clients a fine-
grained control over each request’s version, and gives API designers the
capability of only having to support old versions for resources which have
changed, instead of the whole API.
On the downside, using custom headers is a slightly more complex
approach and it requires better documentation for clients to know how it
works.

Caching
REST takes advantage of HTTP’s cache capabilities. Since GET requests are
idempotent and are supposed to only fetch data, they are cacheable by
default. POST requests can be cached but the server has to explicitly tell the
client through response headers. Other requests like DELETE or PUT, while
they are idempotent, they are supposed to mutate data in the server and their
responses should not be cached.
All the caching techniques from HTTP apply out-of-the box to REST (as
long as we’re not doing something weird, like making every request a PUT
request).
The server can indicate clients how to cache REST responses using multiple
HTTP response headers:

Expires: This indicates the date in which the response will not be
valid anymore and the client will have to request it again. This date
can be in formatted in seconds, minutes, or days in the future. Until
then, the client can use the cached version.
Cache-Control: This is a list of keys and values which describe how
the resource should be cached. The key max-age indicates how long
the resource should be cached. The value of the max-age overrides the
value of Expires.
ETag: This is a string which identifies a specific version of a response.
As long as the content of a response doesn’t change, it will have the
same ETag value. If a resource expires in the client, it can send a small
validation request to the server to check whether the ETag still has the
same value. If the ETag hasn’t changed, the client can still use the
cached response.

Finding the right values for these headers depend completely on the
business logic and the average time it takes for each resource to update and
provide different responses for the same request. For resources whose
response doesn’t change often, you can set large values for max-age and
future dates for Expires.

Effective REST APIs: HATEOAS

The greatest challenge of integrating two systems which may evolve at
different paces is the lack of clarity in the integration point. Without
flexibility baked into the design of an API, it’s destined to fail.
From the point of view of API design, flexibility means that the API allows
both the provider and consumers to change independently, without ever
having to depend on each the other to make changes to keep growing. If a
consumer needs to wait for a producer to implement a new specific action
or resources, many times that’s a sign that the API is not flexible.
The question of how to keep APIs flexible is independent of the technology
you use. You can use SOAP services and still find ways to keep the API
flexible. Flexibility can be defined with two concepts: composability and
discoverability.
We discussed discoverability earlier. It’s the capability of consumers to
figure out exactly what can be done with the API without having to heavily
rely on documentation or an external third party providing usage guidance.
APIs should be built so clients can explore them as they use them.
Composability means that the provider exposes enough resources that the
consumer can combine and build their own high-level actions without
having to wait for the producer to expose that action itself.
Imagine you design an API to create configurations of cars for a carmaker.
You can expose resources for /truck, /sedan or /suv; but if a new car
category needs to be supported, the consumer would have to wait for the
API designer to expose a new resource for that. However, if the API
exposes resources at a slightly lower level like /wheels, /chasis, or
/steering-wheel, the consumer can build almost any type of car they need
to. Just be careful not to go to a level of abstraction that is too low, or the
API will get too complex and unusable.
Inside the REST methodology, the ultimate way to reach both
discoverability and composability is through HATEOAS.
Hypermedia as the Engine of Application State (HATEOAS) is a REST-
based architecture in which clients discover actions related to a resource by
reading metadata returned along the resource’s content.
On websites, users navigate from one web page to another by using links
contained in the body of those pages. In a HATEOAS-based API,

consumers navigate through resources using URI references included in the
response metadata.
Common ways of to implement HATEOAS are HAL, JSON-LD, and
Collection+JSON. Hypertext Application Language (HAL) adds extra
metadata in an attribute _links to the resource model. That attribute
contains links to all the related resources. For instance, the model for our
order resource can have the following structure:

1. {
2. order_id: 123124,
3. … // order data
4.
5. _links: {
6. self: { href: “/order/123124” },
7. parent: { href: “/membership/23” },
8. next: { href: “/order/123138 }”,
9. find: { “href”: “/order{?id}”, “templated”: true }

10. }
11. …
12. }

Notice how the metadata attribute _links allows clients to know that, in
addition to the resource order which they are currently interacting with,
there are other instances of orders which are related. There is also a
reference to the membership of which this order is part, and a template for
clients to find more orders.
Figure 3.4 shows how a graph or network is created by the links added to
each resource response:

Figure 3.4: A network of links using HAL

HATEOAS is the pinnacle of REST APIs, and in practice very few REST
APIs fully implement it. Many teams find that the effort required to enable
HATEOAS is not worth the benefits it might bring to their specific business
cases, and that’s fine.
But, there are cases where HATEOAS can become incredibly helpful, like
the cases of APIs built to be publicly exposed and directly accessed by
external consumers. We will discuss these cases further in this chapter.

Building APIs with GraphQL
The flexibility provided by the composability of REST APIs also has its
own challenges. In order to compose a semi-complex action, consumers
need to make multiple requests to different endpoints. For instance, if you
want to fetch the data of a membership and all its orders, you might have to
do at least two requests; one for fetching the membership resource and one
for batch fetching the list of orders related to it.

Having to make multiple requests for a single action has an impact in
performance, especially in low-end mobile devices with expensive data
rates and limited Internet bandwidth.
Using REST, you can support retrieving both the membership and order
data in a single request by returning the membership data along with the list
of all orders in GET \membership\23\order. However, this could force the
consumers to always fetch the membership data, even if they don’t need it.
We can add a query parameter to opt-in to the extra data just in the cases
that need it.
Unfortunately, supporting specific cases where it’s critical to make as few
requests as possible reduces a lot of the flexibility and expressiveness that
REST provides.
Developers at Facebook, pressed to find a way to expose APIs that still
allowed a high level of flexibility without forcing consumers to make too
many requests, came out with GraphQL.
GraphQL is a framework built in top of HTTP that allows consumers to
send “queries” to the API, as you would to a database like SQL. It starts by
defining a schema which contains the definition of resources like
membership and order. This schema can be written with the GraphQL
Schema Definition Language (SDL) or defined programmatically.
The following is the GraphQL SDL model for both Order and Membership:

1. type Order {
2. id: String!
3. created_by: String
4. created_on: String
5. total: Float!
6. }
7.
8. type Membership {
9. id: String!

10. name: String!
11. orders: [Order]

12. }

Then, using the same definition language, you can define operations like
Query to request data or Mutation to send update/create/delete requests:

1. type Query { order(id: ID!): Order }
2.
3.
4. type Mutation {
5. createOrder(membershipId: String!, total: Float!): Order!
6. }

Both queries and mutations require the API authors to create resolvers.
Resolvers are implementations of the interface actions. They are in charge
of fetching the requested data and return it back to the consumers.
Notice how GraphQL SDL follows a similar pattern than protobuf’s
proto3. These are languages which help you define the format for the data
to be passed back and forth in the API, creating a clear contract.
Unlike gRPC, GraphQL defines its own abstraction layer. All operations are
clearly defined and categorized in queries and mutations. In this aspect,
GraphQL has a similar flexibility to that of REST.
One advantage of GraphQL over REST is that clients can request all the
data they need in a single query request to the API. If they need to request
both the membership and order data, a client can send a query as follows:

1. query {
2. membership {
3. id,
4. name,
5. orders{
6. id,
7. created_by
8. created_on
9. total

10. }

11. }
12. }

The response from the API could look like this:

1. {
2. “data”: {
3. “membership”: {
4. “id”: 23,
5. “name”: “membership1”,
6. “orders”: [
7. {
8. “created_by”: “John Doe”,
9. “created_on”: “2009-06-15T13:45:30”,

10. “id”: 123124,
11. “total”: 34.12
12. }
13.]
14. }
15. }
16. }

We can also choose to fetch only a subset of all fields in each model. This
reduces the amount of data that needs to be sent from the server to the
client. Less data in traffic means better performance. For instance, you can
fetch only the membership information:

1. query {
2. membership {
3. id,
4. name
5. }
6. }

Or include only the totals of each order attached to the membership:

1. query {
2. membership {
3. id,
4. name,
5. orders{
6. total
7. }
8. }
9. }

We can optimize even further by making multiple queries in a single
request:

1. query {
2. membership {
3. id,
4. name
5. },
6. anotherQuery {
7. field1,
8. field2
9. }

10. }

The response for that request will contain a JSON with the data for both
queries. Potentially, you can request all the critical data on a web page by
making just one single request.
GraphQL allows us to express multiple use cases without having to change
the API implementation. We get the benefits of REST’s composability
without the performance hit of having to make multiple requests.
The level of expressiveness of GraphQL comes at the cost of complexity.
GraphQL’s abstraction layer requires more design work than REST. And the

learning curve for GraphQL is steep compared with the other remote API
methods.
Caching is another complication for GraphQL. REST can rely on HTTP’s
native caching strategies, while GraphQL’s constant use of POST requests
for queries makes responses non-cacheable by default. Extra layers of code
need to be added on top of GraphQL to get the benefits of caching
responses.
When to use GraphQL? Good candidates are applications with many
resources with interconnected relationships. It’s not a coincidence that
GraphQL was built by Facebook developers: The social network works
with large graphs of data, and GraphQL was created for those cases.
Applications that need to optimize traffic for mobile devices are also good
use cases.

Building standalone APIs
The adoption of REST and the continuous improvement of API design as
led to API designers to directly expose their APIs to the public. While most
of the use cases of remote APIs is to connect two applications built by the
same team (or a team close to them), some APIs are built without a specific
consumer in mind.
We can find at least two concrete examples of standalone APIs:

Headless CMS systems
Public APIs

Standalone API: Headless CMS
Headless Content Management System (CMS) is a system that directly
exposes an API for consumers to manage their content data. CMS is used
for managing digital or web content, like news sites or wiki pages.
Traditional CMS like WordPress ship with an integrated user interface. If
users need to access the application, the CMS manager needs to provide a
responsive web template or a plugin to expose some of the authoring
features.

For headless CMS, consumers are expected to provide their own user
interface, as the CMS only exposes an API. Figure 3.5 highlights the
differences between traditional CMS and headless CMS:

Figure 3.5: Tradition vs headless CMS

Some of the most popular headless CMS providers are Ghost, Netflify CMS,
or Strapi; all of them open-source platforms.
Headless CMS are flexible. They allow you to use any tech stack you want
for your frontend (WordPress users are tied to PHP, unless they do some
workarounds). Their APIs even allow you to integrate CMS capabilities
into the backend of an existing application.
API designers for CMS products don’t have control over the type of
applications which will consume their services, so the API needs to be built
to provide a good user experience directly.

Standalone API: Public APIs
Some companies expose REST APIs publicly, so they can be used by third
parties. These APIs follow a Software-as-a-Service (SaaS) approach, as in
they provide specific functionality where, without having to install any
piece of software, consumers can take advantage of the API either for free
or by paying a subscription.

Public APIs can be seen as headless applications. Most of them have no
user interface, or their authors only provide simple UI libraries focused to
make integration with the API easier.
A good example of a public API is Auth0. Auth0 is a SaaS service focused
to provide application security services to their clients. They provide user
management (or integration with other user management systems like AWS
Cognito), and authentication or authorization through protocols like
OAuth2.

Note: OAuth is a standard for applications to integrate with identity
management systems to authenticate and authorize users.
In OAuth, a user authenticates using the identity server. Then, the
server will return a user token, which contains the encoded
information for the user. The application then uses this token to verify
the user identity in each request.
Companies like Auth0, Google, or GitHub offer OAuth services that
allow developers to provide authentication through these third-party
sites. OAuth providers return information related to the logged-in
user to the application.

Auth0 is a SaaS company which implements flows like log-in, log-out or
giving roles to users, so you don’t have to implement them yourself. All
you have to do is register an account, and use a key provided by them to
make requests to their publicly-exposed API. In addition to the API itself,
Auth0 provides code libraries for UI frameworks like React or Angular,
which help clients to integrate quickly.
In Figure 3.6, we can see the home page of Auth0, where you can start
setting up an OAuth-based access control flow:

Figure 3.6: Auth0’s web page

Just as Auth0, there is an increasingly large list of companies on the Internet
who provides their services through public APIs. It’s a business model
worth of exploring.
Public APIs highlight the importance of creating good layers of abstraction
in REST services. Just as in the case of headless CMS, designers of public
APIs have no way to know which clients will consume their services, and
have no control of how quickly they change. If the API is not clear, no
client will want to use it, resulting in a loss in income.

Use case: Designing a remote API for the Pizza
Corner
In this chapter, we discussed multiple ways to create remote APIs. For the
Pizza Corner business case, we need to create an API which will allow us to
decouple the UI from the backend business logic, so frontend and backend
developers can work in parallel.
We will start by defining the contract for our API. This definition can be
translated to any of the definition languages we’ve seen in this chapter, so
we have the freedom to define the contract first and then choose the
technology used to implement it.

Let’s start with the list of models which will define our resources:

1. // Models:
2.
3. // model: Member
4. {
5. ID: String,
6. first_name: String,
7. last_name: String,
8. date_of_birth: String,
9. }

10.
11. // model: Pizza
12. {
13. ID: String,
14. toppings: [String],
15. instructions: String,
16. cost: Float
17. }
18.
19. // model: Order
20. {
21. ID: String,
22. pizzas: [Pizza],
23. created_date: Date,
24. ordered_by: Member,
25. total_cost: Float
26. }

Now, let’s define the list of actions we need to support:

1. - See member information: (String memberId) -> Member

2. - See menu: () -> [Pizza]
3. - See all orders for a member: (String memberId) -> Member,

[Order]

4. - Order a pizza: (String memberID (optional), Order order)
-> Integer status, Integer orderId

5. - Add pizza to menu: (Pizza) -> Integer status

Looking at our list of actions and models, we can see that we don’t have too
many resources that need to be connected in each request. The action that
requires the most interaction between resources is “See all orders for a
member”, which can involve fetching data for all three resources at most.
For this reason, we can use either REST or GraphQL.
There are no strong reasons to choose GraphQL over REST, though. The
amount of data that the API can return is small (even if a member has a lot
of orders, we can always apply pagination) and we only have three
resources. RPC can be discarded as well, as we have to support both web
and mobile devices. REST integrates better with both, especially with web,
so it’s good enough for now.
In the previous chapter, we defined that for now we would host the backed
in a single server. We don’t have to worry about communication between
multiple backend services, so we can save ourselves the effort of
implementing gRPC. Once the application grows and we start breaking
logical services into their own applications and servers, we can make use of
gRPC to enable remote communication between them.
We define a REST API containing the following actions:

1. – GET /member/:memberId -> HTTP 200: OK, Member
2. – GET /menu -> HTTP ٢٠٠: OK, [Pizza]
3. – GET /order?memberId=:memberId -> HTTP ٢٠٠: OK, [Order]
4. – PUT /order? memberId=:memberId (order info in the body)

-> HTTP ٢٠١: Created, Integer orderId

5. – PUT /menu (food item info in the body) -> HTTP 201:

Created

Please notice that this is just one way to define our REST API. Other names
and approaches can be used, as long as we follow the REST conventions.

Conclusion
The concept of API is agnostic of the technology used to implement it. API,
as its acronym indicates, provides an interface that enables the seamless
integration between two pieces of software.
An API is a contract that will be followed by the applications being
integrated. This contract has to be clear, usable, and discoverable;
otherwise, no one will want to consume it.
APIs can be local coding abstractions, as in Java or C# interfaces. They
create a contract between classes which can be fulfilled by any
implementation that follows the function signatures provided by the
interface.
Interfaces allow applications to abstract their implementations, even to
move them to remote servers. These implementations can be switched as
needed.
The most common patterns used to implement remote APIs are SOAP,
RPC, REST, and GraphQL.
RPC abstracts function calls by providing programmatic functions that
seamless make requests to a remote server. Consumers call regular
functions which internally invoke the remote function. RCP can be
implemented using HTTP, like gRPC which relies on HTTP/2.
Consider using RPC if the applications you are integrating are supposed to
interact as if they were part of the same application (strong coupling), or if
the server and clients are expected to evolve at similar pace (e.g., when both
are managed by the same team or close teams within the same company).
Integration between microservices in distributed systems is a great place to
use RPC instances like gRPC.
REST is currently the default implementation of remote APIs. It provides
an abstraction layer that separates client and server, allowing them to evolve
at different pace. REST takes full advantage of the HTTP specification, and
relies on HTTP’s features like caching.
Designing REST APIs involve making full use of HTTP methods and status
codes. The combination of these elements with resource-based endpoints
allows developers to discover and compose their own semi-transactional
actions.

The ultimate implementation of REST is HATEOAS. HATEOAS follows
the same web-like structure of the Internet, linking from one resource to
another, and returning enough metadata for consumers to discover how to
act and navigate through the API.
The majority of new remote APIs can be built with REST. REST provides a
good balance between flexibly and performance. It allows you to define an
API without knowing the client requirements beforehand.
For cases where network traffic is critical, like mobile applications whose
targets are low-end devices, GraphQL can be a better choice than REST of
RPC. Other good user cases are applications with a high number of entities
or resources, with a lot of interconnections.
GraphQL allows clients to create “queries” on the models exposed by the
API. Clients can build a request to fetch all the data they need in a single
request, saving network time and data usage. On its downside, GraphQL is
more complex to implement correctly.
Remote APIs can be published directly for third-party clients to consume
them. These APIs enable “headless” (without an integrated user interface)
products like CMS, or SaaS services like Auth0. Some companies can
charge clients for direct use or their API, usually providing usage plans.
If you were to take only one thing out of this chapter is this: The important
part of designing a programmatic interface is to create a contract which is
clear and explicit to every component following it. It needs to define what
are the constants and restrictions, and what kind of data we can expect.
Creating a clear API is the real hard part because once you do this, design
tools like REST, gRPC or GraphQL are so mature that they even generate
the code for you.
In this chapter, we hinted how interfaces abstract away services that use
data stores to persist the data that is passed to them. In the next chapter, we
will focus on these data tools, and we will learn some strategies to handle
and store all the data our server is receiving through its API.

Questions
You’re planning to publish an API and sell access to its data through a
subscription. Which kind of remote API (REST, GraphQL or gRPC)

would you use for this? Why?
Is it possible to create a REST API without using HTTP?
Another team within your own company asks for your help while
redesigning the API which integrates one of their services and a
service you maintain. The business logic will remain the same. The
service is currently using REST and they want to explore ways to
improve the API’s performance. Would you recommend them to stick
to REST? Or would you recommend them to evaluate a different
remote API tool like GraphQL or gRPC?

References
C++ documentation of to_string
https://www.cplusplus.com/reference/string/to_string/
A great explanation of REST
https://restfulapi.net/
Golang tutorial
https://tour.golang.org/
The official documentation for GraphQL
https://graphql.org/learn/
Introduction to gRPC
https://grpc.io/docs/what-is-grpc/introduction/

https://www.cplusplus.com/reference/string/to_string/
https://restfulapi.net/
https://tour.golang.org/
https://graphql.org/learn/
https://grpc.io/docs/what-is-grpc/introduction/

T

CHAPTER 4
End-to-End Data Management

he most significant asset in the modern world is data. The largest
companies make millions in revenue by creating data-focused strategies:

Finding the needs and characteristics of the current and future market,
targeting demographics with their ads, using Machine Learning to predict
ways to increase sales, and so on.
Because of its increasing importance, managing data correctly needs to be
at the core of any software development. It should be a skill that every
backend developer must possess not just specialized roles like Database
Administrators (DBAs).
This chapter describes different ways of storing data, from simple in-
memory data structures to specialized databases. We will understand what
databases offer and what features help us deal with all the complexities of
data handling.

Structure
In this chapter, we will cover the following topics:

Defining the application state
Understanding in-memory data storage
Understanding complex data storage
Indexing
Backup and recovery
Designing data storage in a production system
Use Case: Defining a data model for the Pizza Place application

Objectives

By the end of this chapter, we should be familiar with the most common
ways of storing and querying data. We will understand the differences
between the most popular databases (like SQL, NoSQL databases, and all
the categories that fall on the latter). We will also know in which cases
specific databases work better than others.
We will also get a clear picture of how we can store data in software
applications: the challenges and commonly applied solutions.
This chapter aims to make us feel comfortable working with other
developers to design a data management strategy that makes sense for our
specific use case.

Defining the application state
Every software application uses data. Arguably, there are no exceptions to
this rule as the software itself is data we use to describe other types of
information.
For instance, in the simplest case of a web application, a static website
displays content to everyone who visits it. Even if the website’s content
never changes, it is still considered data. Static data.
As applications become more complex, like mobile or web apps, data
becomes less static: It’s constantly updated by the users and the application
itself. Think of online retailers like Amazon. The list of available products
in online stores keeps changing as providers add new items and users buy
them.
Since data can change in time, we can think of it as the application’s state.
The state is the exact data that constructs the system at any given moment.
The state can also result from the status of the application itself. If the
application is down due to a failure, we can say that at that moment, it’s in
an error state or failure state.
As software developers, it is our job to design how this state is structured
and stored. Understanding how data is stored allows us to make informed
decisions for our applications.

Hardware storage

At a low level, computers don’t store the application state by default. If
we’re working in an application like a text processor or a spreadsheet, either
you or the program itself needs to explicitly save the state of a document
somewhere. If neither you nor the app ‘save’ your work, and for some
reason, your computer runs out of power, the application state would be
lost.
From a hardware point of view, volatile memory like Random Access
Memory (RAM) will lose all the data it contains if the device loses its
power. In general, most data in the RAM will be deleted in a short term
unless it’s persisted somewhere. The reason hard disk drives (HDDs)
exist is precisely to persist state in the long term, even after turning off the
device.
A good question is: Why do we keep using RAM for storing in-memory
data? Why not store it directly in HDDs? The answer is that long-term
storage devices like HDDs are significantly slower to read and write than
RAM. Hypothetically, moving all computation into HDDs would persist all
state at all times, but it would also make our applications significantly
slower.
So, computing devices need to balance different storage levels to achieve
the best results.

Understanding in-memory data storage
The simplest way of storing software is through in-memory data structures.
Among these are variables, arrays, dictionaries or hash maps, lists, and
queues. All these data structures are stored in the RAM’s heap, as shown in
the following Figure 4.1:

Figure 4.1: Data distribution in the RAM

The heap is where all dynamically created data structures are stored. When
C code calls malloc, or Java calls new Object(), it tells the application to
reserve enough space in the heap to store our data structure. When you start
an application, the program itself will be loaded into memory, into the
section labeled with “Static data” (also seen in Figure 4.1).
In-memory data structures will only live as long as their context does: If
they are declared in the global scope, they will live until the application

ends. If they are declared inside a function, they will live until the function
context is destroyed (most of the time, that moment is when the function
returns or when all references to that context are cleared). Once the context
of the data structure is destroyed, the heap memory used by the data
structure will be marked as free memory for other processes to use.
Due to their short lifespans, in-memory data structures are not a great place
to store things that need to live for a long time. If there is no secondary way
to persist data, everything stored inside in-memory data structures will be
deleted.
However, as we pointed out when discussing the differences between RAM
and HDDs, in-memory data structures are faster than disk-based solutions
like databases. This makes in-memory data structures great candidates to be
used as a caching layer.

In-memory cache
Picture the example of the online store application we mentioned earlier.
The application stores the list of all the products for a given vendor in a
database. Since each vendor can have hundreds or thousands of products,
querying that database can take a long time. Let us assume that each query
to the products database takes 3 seconds.
Every time a user opens the online store they will have to wait at least three
seconds every time they navigate to the catalog page. This is a bad user
experience.
Now, let us also assume that we know vendors update their catalogs at most
every hour, so all requests done withing that time window will always
return the same results. We can rely on in-memory data structures (maybe
using a hash-map) to create a cache with a TTL (Time to live) of one hour,
and reduce our user’s page load time from seconds to milliseconds.
This caching layer would allow us to implement a couple of performance
improvements:

After the list of products is queried, we can store the results in the
cache, using the query parameters as the key. If that same query is
requested again within our TTL, we serve the results directly from the

hash-map. Otherwise, we make a request to the database and update
the cache, restarting its TTL.
Select a list of the most popular queries site-wide and pre-store their
results in the cache. This will improve page load times for a
significant percentage of users without getting the initial performance
impact of making a database query.

In this case, storing the application state inside in-memory data structures is
fine because if data becomes stale (out-of-sync with the database) or if the
application crashes and the data structures get cleared, we can always re-
fetch all the data again from the persistent storage. Losing the data in the
cache is not a catastrophic failure because it’s not the main source of truth.

Tip Search term: source of truth
During the lifetime of an application, we can create multiple copies of
a specific piece of data. Then, the application can modify each copy as
it needs, most of the time due to a user action.
If one copy is modified with changes that conflict with the other
copies (e.g., one attribute is updated in one copy, while it’s deleted in
the other), we can ask ourselves: Which copy is the “real” truth?
While choosing the most-recently updated copy may sound like a
good approach, it is not always the right solution.
However, when we pick one of those copies to be the primary copy, or
the ‘source of truth’. When in doubt between conflicting changes, we
will often choose the contents of the source of truth above every other
instance.
By choosing an instance of data to be the single source of truth, we
can concentrate on keeping it updated and safe. If all other copies get
corrupted or lost, we will still be in a good position because we can
always use the source of truth to make more copies. However, if we
lose our source of truth, we may not be able to trust any of the other
copies because they might have been tampered in ways out of our
control.

In the case of the in-memory cache example, the source of truth is the
database. It’s OK if the cache misses some updates for a while, but the

source of truth should always receive all updates.
When building an in-memory cache, we have to be careful about a few
things:

For simple caches, updates will only be visible after the TTL - If
vendors were to update their catalogs two or more times within the
TTL (an hour in our example), users will only see the updated data
after the TTL of the existing cache expires. Users need to be aware of
this trade-off; the actual TTL value needs to be defined for the specific
use case.
We cannot store all the application state in memory - RAM tends to be
smaller than HDDs. While RAM operates in gigabytes, HDDs can
store terabytes or more. Because of this, we cannot just dump the
whole database into the RAM. RAM storage is generally more
expensive than HDD storage, so our cache size has to work around
those constraints.

In-memory databases
If we build on the idea of the hash-map-based, in-memory cache, we can
find in-memory databases.
An in-memory database is similar to in-memory data structures in that all
data lives in the RAM. To keep operations, fast, each write, read, update,
and delete is done to the data kept in memory.
In-memory databases add extra features to data structures to make
themselves more useful and resilient. For instance, they can be used as
embedded databases or installed as standalone servers. They expose APIs
so clients can perform multiple operations on the data, from CRUD actions
to advanced querying features.
Many in-memory databases regularly perform back-ups in persistent
devices like the HDD to avoid losing information during failures. These
backups are commonly one (or a mix) of the two:

Dump a copy of the data on the disk. If the database crashes or the
server goes down, it can recover its contents from the disk-stored
snapshot.

Keep an ordered log of each action performed to the database. When
the database needs to recover after failure, it can replay the action log
and recreate the data as it was until the last action was logged. We will
discuss more about these logs further along in this chapter.

Popular in-memory databases like Redis, MemSQL, and VoltDB work as
we just described. The high-performance that provides having all data
stored in memory has led to a wide adoption of these products. For instance,
multiple projects use Redis as:

Distributed cache: This is the same idea as the in-memory cache we
just described but in this case, the cache is deployed to its own servers.
Even when deployed remotely, in-memory databases are faster than
regular, disk-driven databases.
Distributed session management: We discussed how HTTP is
stateless. In some specific cases, we need to keep track of data from
one request to the following; user’s session data is one of those cases.
Since user session data will be stored only for the duration of the
session itself, a semi-persistent store like Redis is a good place to store
this information.
Message broker: Redis can serve as a middle point between multiple
applications. It offers APIs that allow consumers to use it as a queue to
enable asynchronous communication between two or more
applications.

Simple storage in text and binary files
Let’s take a step back from databases. What is the simplest way to persist an
in-memory data structure without having to install anything or depend on
third-party libraries? The simplest persistent storage method is to store data
in files.
Files can be categorized into two: text files and binary files. While both
types deal with a set of bytes, text files structure them as text characters.
Binary files may contain text and non-text data, but they’re not directly
encoded to be human-readable.
The process of converting an in-memory data structure into data that can be
stored in a file is called serializing. The opposite operation, parsing the

contents of a file into a data structure, is called deserializing. In
serialization, we convert in-memory data structures into bytes, text, JSON,
or XML (or any other predefined format); then we can store -or even
transmit through a network- the serialized data into text or binary files.
How do we serialize data structures? For binary files, it depends on what
coding language you’re using. For instance, in Java, a class can be
serialized if it meets two conditions: it implements the Serializable
interface, and all the class attributes are also serializable. Then, a
serializable class can be serialized using ObjectOutputStream, as shown in
the following code snippet:

1. Product product = new Product();
2. try {
3. // Create file output stream
4. FileOutputStream fileOutputStream = new

FileOutputStream(“productFile.bin”);

5.
6. // Convert the stream into an object stream
7. ObjectOutputStream objOutputStream = new

ObjectOutputStream(fileOutputStream);

8.
9. // serialize the “product” object

10. out.writeObject(product);
11.
12. // close the stream
13. out.close();
14. fileOut.close();
15. } catch (IOException i) { //… }

The file doesn’t need to contain a “.bin” extension; this is just a random
extension we chose for this example. The file might not even have a file
extension at all.
We can build a complex data structure to store our application’s state and
create snapshots by serializing it to a file. Later, if we need to recover the

state from the latest snapshot, we can read and deserialize that same file.
Data can also be stored in text-based files. CSV, XML, or JSON are, at their
core, plain-text files whose contents are structured and formatted following
a defined syntax. This syntax defines special rules that allow us to interpret
the data these files store correctly.
Using binary or text files as persistent storage can be a good solution for
some cases:

Text logs: Logging events or user activity within a system can be done
directly to a text file. This is data meant to be read by a human
(especially error logs), so storing it in a text file gives us easy access
and provides a clear intent of its use.
Backup: Create snapshots of in-memory data structures -both simple
and complex- and store them as files. We can retrieve and deserialize
the content later, as needed.
Configuration data: Some applications require configuration
parameters for their execution: connection details, URLs of external
services, business-specific parameters, and so on. If this configuration
is meant to be handled by human administrators, serializing them in
human-friendly formats allows administrators to modify its contents
easily.

Simple file storage has its limitations, though. For starters, it’s difficult to
manipulate the contents of a binary file without deserializing it first. If we
want our data operations to be performant, we need to store all the
information in small files to avoid dumping too much data into memory. We
might need to split files as they grow beyond acceptable size.
Querying data stored in files is hard. How many files would you have to
deserialize and check to find the list of data for a given user? How many
files would we need to store the data of companies like Google or Twitter?
As the volume of information we are handling and the frequency it changes
grows, files alone become obsolete quickly.
Of course, we could build an application that manages application state
using files in a performant way, offering a straightforward API, so users
don’t have to worry about the internal implementation of this data storage.

The good thing is that those applications already exist, and they are called
databases.

Understanding complex data storage
As the size and complexity of our data grows, the tools we use to store data
need to be more advanced. As text or binary files become insufficient to
contain our application’s state, the next level of abstraction is to use
databases.
A database is a type of specialized software whose primary goal is to allow
users to store, update, and query data. They usually offer a clear querying
language and offer multiple features like replication, backup management,
and access control, among others. However, underneath its API, databases
store data into text and binary files.
This section will discuss the types of databases we can use, and we will also
understand how to choose from this list of options. Remember you should
choose the database based on the data your application will handle. It is best
not to choose the data storage tool first and then try to fit the data to work
with it.

SQL or NoSQL?
Relational databases have been around since the 1970s. Since then, they
have been the defacto database architecture used in most software
development projects. Since its inception, multiple other types of databases
have tried to replace relational databases, only to be relegated to niche use
cases. To this date, the popularity of relational databases cannot be denied.
It’s easy to see why developers adopted relational databases. These data
stores abstracted away the implementation details of the data management
operations so that developers could think of data as tables and relationships
instead of files and bytes.
Relational databases also provided a declarative language to query the
database: SQL. These queries allowed developers to describe what data
they needed without specifying how to get it.
This level of abstraction allowed database providers to write multiple
optimizations under the hood. As long as the developers kept using the API

provided by SQL, the underlying implementation could use improvements
like indexes and query optimizers.
Then, came NoSQL. More than a specific type of database, NoSQL is a
category used to cover all the databases which don’t follow a relational
architecture. NoSQL databases were a response to the challenges
developers were having while using relational databases. Some of those
challenges were the following:

Relational databases require rigidly defined schemas. While this might
have advantages like easy validation and enforcement of a specific
data structure, this comes at the cost of flexibility. You need to know
your data’s structure before you start collecting it, which is not always
possible.
Relational databases are difficult to scale. While database providers
have improved in this aspect in recent years, this was one of the strong
reasons NoSQL products gained popularity: They allowed developer
teams to quickly scale without all the complex considerations that
relational databases need.

Under the NoSQL umbrella, the most popular types of databases we have
are document databases, graph databases, and column databases, among
others. Each of these has very different implementations with specific and
interesting solutions to data challenges. If you think about it, it’s kind of
unfair that they are all clustered in the same bucket.
So, which type of database should we use? In Machine Learning and
Statistics exists the “No free lunch” theorem, which implies that there is no
single algorithm that fixes all problems. Different problems require
different solutions. The same is true for databases.
The main takeaway is that, just like a screwdriver doesn’t replace a
hammer, NoSQL databases don’t replace SQL databases. They extend the
catalog of specialized tools available to us.

Document databases
In document databases, we format our data into singular documents
encoded with a format like JSON, Avro, or XML. All data related to an
instance of a model is stored in the same document.

Similar to other types of databases, documents can be retrieved using keys.
These keys allow us to fetch specific documents without searching the
whole database for them. Keys can be indexes, which we will discuss later
in this chapter.
Document databases can have relationships between documents, but
database support for joins using foreign keys is not nearly as mature or
supported as in relational databases. Related data is expected to be part of
the same document, even if that means duplicating records.
Document databases are suitable for:

Data with high locality
Data with few relationships
Unstructured data

High locality
Think of a straightforward model for the Order entity, composed of mostly
primitive-valued attributes:

1. // Order
2. {
3. id: 123,
4. items: [
5. {
6. type: “PIZZA”,
7. ingredients: [“CHEESE”],
8. quantity: 1,
9. size: “XL”,

10. price: 12.99
11. }
12.]
13. total: 12.99
14. notes: ‘Extra crispy’
15. date_created: “…”

16. }

Looking at the attributes, we could identify another hidden model: Each
instance of the items list can be considered a separate model we can call
Item.
By looking at the data, we can see that each Item will always be part of
only one Order: “Item” has very specific values like “size” of “XL” and a
“quantity” of 1, both of which are tightly coupled to its particular order
instance.
The relationship between items and order is so close that it makes sense to
store them together: If we review the use cases and find that we will almost
always retrieve an Order and its items together, then we know for sure that
this model has a high locality.
Locality refers to how close data is stored to each other. Document
databases offer high locality storage for each document, while databases
like graph or relational databases have a reduced locality due to their
models being distributed in tables and connected through relationships.
Most of the time, we will find high locality in 1:N relationships where the
children entities can be thought of as being part of the parent entity instead
of independent entities.
Data with high locality is a great candidate for document databases, but it
can also present a challenge when querying data: Each read operation
fetches whole documents only. For small documents, this might be OK, but
as documents grow in size, you might have to fetch a lot of data you won’t
use, only because it’s local to the data you do need. Some document
databases have some support for querying nested attributes, but it’s limited.

Few relationships
To keep a high locality in documents, it’s essential to reduce the number of
relationships between them. Data with multiple connections between its
entities force document databases to do multiple queries to fetch all parts of
a relationship.
A high number of relationships between data is one of the things that makes
relational databases so difficult to scale horizontally: Related documents
should be stored in the same database instance to avoid having to do join

queries across multiple servers. Document databases don’t have this
problem, as most data is already contained in the same record, making it
easy to scale horizontally.

Unstructured data
We might not know each attribute that our models should contain until we
start collecting it. This is common at the beginning of a project when
requirements change quickly and fields have to be iteratively added or
removed from the data models.
Another case is where we don’t have control of the data’s format. The data
we need to store might come from an external service that can change the
attributes it returns without warning and without us having any control over
it.
Document databases are great for all these use cases because we don’t need
to define a schema before we start saving data. We only need to have a
schema to read the data. The schema defines the data format we want to use
for the retrieved documents.
Of course, we can also store data that is well defined, but the main
takeaway here is that document databases don’t strictly enforce schemas,
and we can add fields as we need; there is no need to rewrite our whole
database or update each existing record like happens with relational
databases.

Relational databases
Relational databases require us to break down our data into entities and
their relationships. Instead of nesting one entity inside the other (like we did
with Order and Item for the document database), we create two different
entities and link them through relationships.
Traditionally, relational tables are flat data structures where each attribute or
column is a primitive value. Figure 4.2 shows how the relationship between
Order and Item is mapped in a relational approach:

Figure 4.2: Entity-relationship diagram for the Order and Item models

If we need to retrieve an order and all their items, we will do a join
operation between both tables, where the Items foreign key order_id
matches the Orders column ID. The following is an example of such a
query:

1. select o.id, i.item_type, i.ingredients, i.quantity,
2. i.item_size, i.price, o.notes, o.total
3. from Orders o join Items i
4. on o.id = i.order_id;

Relational databases are a good choice for cases where:

Models are independent of each other
Data has multiple relationships between their models
Data has a fixed structure

Note: While traditional relational databases use only flat tables and
relationships, newer versions of some SQL databases allow us to store
more complex structures, like arrays of strings, binary data, or JSON
documents.
The addition of these features is a way to deal with the changing needs
of many developers who want the benefits of high locality -which is
characteristic in document databases- while at the same time keeping
the query power of join operations in data with a high number of
relationships.

Models are related but independent
If there exists a relationship between two or more models, but there are use
cases where each model can be queried and used in isolation, we can say
that they are independent of each other.
In Chapter 3, Designing APIs, we discussed two models, Order, and
Membership. Even when all orders are linked to a membership, Order by
itself has enough meaning to be used in isolation: We can look at a specific
order or print lists of orders across multiple memberships. The same applies
for Membership, as there are cases where we will want to fetch a
membership without having to also query its orders.
When models are independent of each other, it’s challenging to store them
in nested structures (like JSON documents) because there will be use cases
where we want to query one model but not the other. This separation is part
of the essence of relational databases.

Multiple relationships
If our data contains multiple entities related to other entities, we have even
stronger reasons to choose a relational database.
Think of models that have N:M relationships like Customer and Order,
Provider, and Product. There is no easy way to encode N:M relationships
in document databases. We would be forced to create separate document
tables and find a way to represent relationships between them. And that is
something at which relational databases do a better job.

Fixed structure
Relational databases require us to define each attribute along with its data
type before we can store any records in them. If we need to update our
schema to add or remove columns, then we have to update every existing
record in that table. This is a stark contrast from document databases were
records in the same table can have different attributes.
Because of this characteristic, we prefer data with the following
characteristics:

We know all its attributes in advance.
The data attributes don’t change often.

An example of data with a fixed structure can be historical data, like
metrics we took from past events. We can deduce the structure of any data
record that has already been collected, and we can assume the rest of the
records will follow that same format.

Normalization
In the context of relational databases, normalization is a process through
which we structure (or restructure) our tables, so we minimize the amount
of repeated data.
Normalization is a concept very close to that of having a single source of
truth: We need to have just one “main” copy of the data we store. If we
need to create variations of that single copy, or if we need to mix it with
other entities, we do so when we read them using queries (or concepts like
‘views’ or ‘stored procedures’).
For instance, imagine two independent entities Videogame and Person,
which have a many-to-many relationship with each other (for example, one
videogame can be bought by multiple people, and one person can own
multiple videogames).
If we need to store this relationship in a document database, we would have
lots of repeated data. For instance, the pair of hypothetical gamers, Mario
and Luigi, can own the same videogame “The pipe game”:

1. [
2. {

3. personId: 123,
4. firstName: “Mario”,
5. gamesOwned: {
6. [
7. gameId: 321,
8. gameTitle: “The pipe game”,
9. //…

10.]
11. }
12. },
13. {
14. personId: 122,
15. firstName: “Luigi”,
16. gamesOwned: {
17. [
18. gameId: 321,
19. gameTitle: “The pipe game”,
20. //…
21.]
22. }
23. },
24.]

In this case, gameTitle (along the rest of the attributes for that videogame
entity) is repeated for both users. If the game manufacturer decides to
change the title to something like “The pipe game: Remastered”, we
would have to find all the people who own this game and change the title
attribute in each nested record. The use of repeated data is referred to as
being denormalized.
In a relational database, we could normalize this data by creating a separate
table for Game, and store all the people who own games through the table
owned_by:

1. create table Person (
2. personId serial primary key,
3. firstName text
4.);
5.
6. create table Game (
7. gameId serial primary key,
8. gamteTitle text
9.);

10.
11. create table owned_by (
12. personId serial references Person(personId),
13. gameId serial references Game(personId)
14.);
15.
16. select p.firstName, g.gameTitle from Person p
17. join owned_by ob on p.personId = ob.personId
18. join Game g on g.gameId = ob.gameId;

We represent ownership with a record in owned_by that references to the
primary key of both Person and Game. We relate each person and the games
they own through a join query.
Since they are normalized, both Person and Game can be updated
independently and only once per record. If we need to change the title of
“The pipe game”, we need to only update its record in Game. Both
owned_by and Person remain unchanged, as there is just a single copy of
the game attributes, and all relationships are abstracted through the use of
primary and foreign keys.
If you have decided to use a document database, one or two denormalized
records are not the end of the world. But as the number of denormalized
data increases, it might be worth to consider migrating to a relational
database.

There is a set of defined rules on how to introduce normalization in a
denormalized database. These rules are out of the scope of this book and
more suited for a specialized book about SQL.

Graph databases
As the number of connections between the models in our data grows,
modeling them in relational databases becomes difficult (and becomes
almost impossible for document databases). As the data grows from 1:N or
N:M dimensions to something like N:M:O dimensions -multiple links in a
single many-to-many relationship-, and the data structure become a set of
interconnected entities; graph databases become a great way to store it.
Graph databases are used extensively by social networking companies like
Facebook, as they are especially good for capturing highly-interconnected
data like social graphs. Some of the most popular graph databases are
Neo4J, Amazon Neptune, ArangoDB, and RedisGraph.
Graph databases are great for:

Data with a lot of connections
Data where the relationships are first-class citizens

Data with a lot of connections
In real life, entities can form relationships at any time, relationships that
weren’t there before. As our models and our understanding of them evolve,
we need the flexibility to design these new relationships after we define our
initial schema. Graph databases give us this flexibility.
For instance, think of an entity Person. If we try to model a system that
captures the people working at a movie production, the relationship
between Person and Movie can be seen as ACTED_IN, if the person is an
actor. However, a Person can act and produce a movie. In fact, a Person
can be related to a movie in a multitude of ways, as shown in the following
Figure 4.3:

Figure 4.3: Relationships between the Persona and Movie entities. (Image from Neo4J website)

As seen from the preceding example, two entities can have more than one
type of relationship between them. We could model this in a relational
database, but we would have to expand our design beyond just Person and
Movie to introduce extra entities (like the PersonInMovie join table) just to
try to capture this use case. Figure 4.4 shows the entity-relationship model
needed for this example:

Figure 4.4: Relational database design for the Person-Movie relationship)

For this example, the problem is not to have to introduce an extra table to
express this complex relationship. The problem is the complexity added by
these extra entities grows linearly as our data grows in size and dimension.
Use cases like these fit more naturally in graph databases where complex
relationships don’t need to be expressed as entities themselves.

Data where the relationships are first-class citizens

In relational databases, the main way to express relationships is by applying
the join operations in foreign keys. These connections are abstract in
purpose: Using only foreign keys (and maybe join tables), we can express
any kind of relationship. This abstraction comes at the cost of extra
complexity which is captured in the length of queries used for this
relationship.
For instance, for the simple case of finding all instances of Person that have
a relationship of DIRECTED to a Movie, we need to write the following SQL
query for relational databases:

1. select p.full_name, m.title, pm.role_in_movie from Movie m
2. join PersonInMovie pm on m.id = pm.movie_id
3. join Person p on p.id = pm.person_id
4. where pm.role_in_movie = ‘DIRECTED’;

The intent of the query is obscured by the hoops we have to jump in order
to stitch the data we need together. Now, look at that same query using
Neo4J’s query language, Cypher:

1. MATCH (p:Person)-[d:DIRECTED]-(m:Movie) RETURN p,d,m

The main difference between relational databases and graph databases
while capturing relationships is that relational databases encode the
relationship as data, while graph databases encode the relationship as part
of the database definition. That is the reason why Neo4J’s query language is
so expressive: relationships with attributes are first-class citizens to it.
The takeaway here is not to say that relational databases can’t store graph
data. In some cases, they might do it very efficiently. The point is that we
have to do less workarounds storing and querying this data in a graph
database than with relational databases.

Scalability
A common point used by system designers to choose a database is
scalability. Many people default to using document databases assuming that
data will always need to scale horizontally. Many times, this is an
overestimation.

Note: Horizontal versus vertical scalability
As the data grows, we also need to increase the database capabilities
to meet with this added demand.
Scaling vertically means adding more processing power or memory to
the single server hosting the database. This process is almost
transparent to any database, and basically no design changes are
needed.
Scaling horizontally means distributing the database to multiple low
or mid-range servers. As the demand increases, we add more servers
to meet it. This process requires more consideration than vertical
scaling.
Scaling horizontally is cheaper than scaling vertically. Equipment like
high-capacity memory and processors is expensive and covers only a
part of the demand which multiple, smaller, servers can cover.
However, for some cases scaling vertically is enough to cover the data
demand without having to deal with the complexity of managing a
distributed database.

There is a common understanding that relational databases do not scale
horizontally well. While there is some truth to this (join operations across
servers are costly due to network latency, so the database has to be designed
to keep most related data in the same server instance), it’s a mistake to
always choose NoSQL databases for this reason alone.
Relational databases that are scaled vertically still allow some large
applications to grow considerably, especially if the database is well
designed and fully implements optimizations like indexes.

File storage repositories
Some use cases require us to store binary files like pictures or videos, or
text files like resumes, forms, contracts, and so on. Some of these files
might be stored as additional data to that which is stored in a separate
database (for example, profile pictures for user profiles), or they might need
to be processed in order to extract information from them (like image
recognition, natural language processing, among others).

Relational databases provide special column types (like BLOB) that allow
us to store binary data in them. Just like the JSON-formatted attributes,
these kinds of features were introduced as additions to the relational
database model.
Relational databases are not the most natural option for storing binary files,
as there are some extra downsides:

The space required by files might complicate some relational database
operations like backups or replication.
File exploration is opaque in relational databases. There is no easy
way to preview files stored in a relational database without
workarounds.
Extra processing needs to be done to the files in order to create
publicly accessible links.

Again, it’s perfectly possible to store large sets of files in relational
databases, but we would be missing many of the benefits of file storage
repositories.
File storage repositories are specialized data stores that focus on storing,
organizing, and even querying files. The most common file repositories are
AWS S3, Azure Blob, and Ambry, and these are just a few examples.
File repositories offer ‘buckets’, which are similar to directories in
traditional file systems. These buckets are analogous to database tables.
Some of the features which file storage repositories provide on top of
storage are:

Easy exploration
These products usually have user interfaces that allow developers and
users to preview and search the stored files
Access control
Limit who can see, edit, or download the files
Public link generation
Create links for clients to download the files when they need them
Query systems can be built on top of file repositories

For instance, Amazon Athena allows you to query and analyze data stored
in AWS S3, without requiring developers to build code to parse, store, and
query the files.
The heuristics for when and how to use file storage repositories are:

If files are a central part of the business logic of your application, use
a file repository system to save yourself the work of handling file
management.
If processing and/or creating a file (like a report) takes time, instead of
building it when the user requests it, create it in advance and store it in
the file repository.
If the file upload rate is high (e.g., many users uploading multiple files
at the same time), directly store them in the file repository and process
them asynchronously. This will avoid any bottlenecks caused by the
throughput limit on your file processing services.
If you need to “parse” the files to extract information of them, it’s a
good practice to store the file in the file storage repository, parse it and
store the extracted data in your database of choice (SQL, MongoDB,
and so on) along with a reference to the original file.

Beyond technical requirements
When we start working on the design for a database, there are other points
to consider beyond the technical characteristics of the application itself.
The biggest reason behind why so many applications keep using relational
databases instead of more specialized storage is that there is plenty of talent
available. Most software developers are trained in SQL, so finding
developers for a new project is cheaper than finding someone with
experience on, let’s say, graph databases.
Sure, you can always hire SQL developers and train them to use MongoDB
or Neo4J, but the truth is that you will need someone with experience who
can fix a potentially critical bug in production that might affect all of your
users.
Another constraint while choosing which database to use is the existing
infrastructure. If your clients have already spent millions in creating an
infrastructure around relational databases (licenses, optimizations, scaling,

and so on), they will hardly want to spend some more money -even if it’s a
delectable amount- and discard all of their investments.
While “we have always done it like this” is not enough excuse to not try to
choose the best storage option for your use case, sometimes we have to
work with the material we have.
The best we can do is create an analysis to justify a decision that might not
be practical at first glance. Many large re-design and re-factoring projects
have been born out of finding during analysis that the investment will be
worth it in the long term.

Indexing
Indexing is one of the most critical aspects of building data storage. A
database without indexes is almost certain to struggle with slow queries. We
will dedicate the following section to talk about indexes and how to
leverage them to guarantee our database can perform up to our users’
expectations.

Reducing time complexity
Let’s say we have an unsorted, zero-indexed, list of records that contain a
million of Product elements. Individual elements in the list can be accessed
by their index:

1. [
2. // record at index 0:
3. {
4. title: “Product01239”,
5. price: 499.00,
6. …
7. },
8. // record at index 1:
9. {

10. title: “Product34464”,
11. price: 120.00,

12. …
13. },
14. // ١000,000 records in total
15.]

We want to find a product with a specific value, let’s say $120.00. Since
this is an unsorted collection, we would have to do a linear search in order
to find the record that matches the expected price.
Linear searches have a time complexity of O(n), which means that the
search time increases linearly as the number of elements in the list grow. If
checking each record took half a second, then searching for an element in
our example would take at worst ~128 hours. How can we improve this?
We can build an index: A list of tuples (price, index), where the first
element is the price of each record, and index is the index value of the
record in the original list. This list is sorted by price and then by index.
What this sorted index allows us to do is to perform a binary search on the
price attribute. The result of this search would give us the tuple with the
expected price and the index pointing to the matched product in the first
list.
Binary search has a time complexity of O(logN) which means that, for a
million records, the search would do at most ~20 look-ups. Using the same
time assumptions of half a second per lookup -as in the linear search
example- this would take at worst 10 seconds (way less than the hours it
may take doing a linear search). Of course, the magnitude used for the
average time per look-up in this example is way larger than it would be in
practice, but it illustrates the difference in performance that having an index
can make.
At a high level, this is what indexes do. Indexes pre-calculate and store
data structures on which queries can operate faster. Queries that use the
indexed attribute will take less time, at the cost of the extra storage used by
the index.
In database engines, not all indexes do a binary search. They use complex
data structures like B-trees which also allow queries to be performed
without having to scan for every record in the table.

Example: Benchmark the impact of indexes in
SQLite
The best way to evaluate the impact of an index in a database is to run a
benchmark against it: Measure the performance of a query searching for a
record that matches a specific condition. We will use SQLite, as it doesn’t
require us to install any database server.
We can create two simple tables in SQLite. They will be identical except for
the table name, and the fact that one will have an index on the price
attribute while the other won’t:

1. CREATE TABLE products (title text, price real)
2.
3. CREATE TABLE indexed_products (title text, price real)
4. CREATE INDEX price_index ON indexed_products(price)

Then, we will insert 100,000 records with random values for each attribute.
We need to see how the query performance changes as the number of
records grow so, every 1000 insertions we will run a query against each
table and measure the time they take to complete:

1. select * from products p where p.price = 100;
2. select * from indexed_products p where p.price = 100;

To better visualize their differences, we create a graph with each
measurement in milliseconds. Figure 4.5 shows the results of the
comparison:

Figure 4.5: Relational database design for the Person-Movie relationship)

We can see that the query time for the non-indexed table kept growing
linearly as the number of records increased. On the other side, the graph for
the indexed table seems to be flat. It’s only after you zoom into it that we
can see that the graph for the indexed table is also growing, but at a
considerably slower rate.
In the context of modern applications, a million records it’s not too much
data. This little experiment makes it clear that querying over specific
attributes that are not indexed can be extremely un-performant.

Backup and recovery
There are many bad things that can happen to our data: We can delete our
database by mistake, hackers can compromise the integrity of our data, or a
server itself can break down. Even whole data centers can fail during events

like natural disasters. It’s not a matter of if our database will fail, but it’s a
matter of when and most importantly, what will we do about it?
Every database instance should periodically create backups. Backups are
temporal snapshots of our data: Every certain amount of time we make a
full copy of our data and store it somewhere. In case of irreparable database
failures, we can fetch the latest snapshot and rebuild the content of the
database up until the point in time when the backup was created.
How often should we be backing up our database? In a perfect world
scenario, we can create a backup every time the database is updated
(actually, in a perfect world scenario we wouldn’t need backups at all). In
real life, databases can be large enough that if we need to create a full
backup for every update we would be getting a newer update before we
even completed the previous copy.
The time we configure between backups depends on the characteristics of
the data we’re storing. In theory, how much data would you afford to lose?
The last day of updates? The last hour? If your data is mostly read-only and
you only have one or two updates daily, then maybe it is reasonable to
create a backup for every update.
If your application will be getting tens of updates per second, then you need
to plan your backup strategy in a better way. There are multiple techniques
to create database backups and, as we will see by the end of this section, we
can mix a couple of them to fill the gaps.

Backup database files
At the lowest level, databases store data in a file system. We can create a
backup by copying these files into a separate location. We must be careful,
though. The database might be in the middle of an update or a transaction,
and copying its files might end up in a half-baked state. In PostgreSQL, this
is method is called “File system level backup”, and it’s advised you stop
your database before backing up to avoid creating a corrupted copy.
Obviously, turning off a database for backup is not always possible,
especially if that’s the only database server you have; it would force your
application to be offline for some time.
Even with its downsides, some applications choose to follow this technique.
It may be because it’s really simple (just copy the whole data directory to a

different server and you’re done), or it might be because they are running an
old version of a database that doesn’t support any other kind of backups.
Development teams who have to follow this path choose times with low
user traffic to pause the application for “maintenance”.

Creating backups with activity logs
Most modern databases keep a log of each update operation applied to its
contents. These logs can be used to monitor activity or to diagnose the
cause of a problem. They can also be used to re-create the contents of the
database if needed.
Imagine a list where we append each update operation ever done to the
database, in order of execution. We can take this list and re-apply each
operation if we need to recover the state the database was at when the
activity log was last updated.
Figure 4.6 shows how each update was done to a database is first applied to
the activity log and then it is actually applied to the data storage. If the
second insertion fails, the database can retry using the activity log:

Figure 4.6: Activity log within an SQL database

If this approach sounds familiar it is because we applied the same
techniques in this chapter at the in-memory data storage section.
One advantage of recovering through activity logs is that, if updates done to
the database trigger any side-effects (like running any SQL stored
procedures), this approach will guarantee that these will be executed in the
same order they originally did.
In MongoDB, the set of activity logs is called Oplog. In PostgreSQL, these
logs are SQL statements, and creating a backup through them is called
creating an SQL dump.

Backup through replication
The process of creating one or more instances of a database containing all
the data from the original database is called replication. Replication has
many advantages (which we will discuss later on in this book) and one of
them is that it can work as a backup mechanism.
Most database engines have added functionality to replicate their data to
other running instances. The original database will receive multiple update
statements; these updates are then sent to the running replica so it can apply
them as well. Following this procedure, the replica will have the most up-
to-date data.
However, if the replica is too behind the original database, (because the
original kept getting new records as the replica was being created) they can
use the activity log from both databases, find the difference of update
statements, and apply them as a patch to the replica.
If anything goes wrong with the original database, we can promote the
replica to be the main database; then, we create a new replica using the new
main database as the source of truth.

Tackling gaps in backups
If we can keep multiple replicas of the database, recovering from failure is
relatively simple. But, what happens if we cannot keep a live copy of our
database ready to be promoted?
At the beginning of this section, we discussed the case where an application
executes multiple database updates in a short period. In that case, it’s almost
impossible to create a full copy of the database with the most up-to-date
information. Even if we configured our database to create one backup after
another (assuming the database allows it without blocking execution), all
the information in between backups would be in danger of being lost in case
of failure.
For those cases, we can use a hybrid approach:

Create periodic backups of the database contents, even if there is a gap
in operations between each backup.

Schedule the backup process as often as possible, but without affecting
the uptime of your application. This varies between database products.
For the gaps between the next and latest backups, keep a copy of the
activity log.
When we need to recover from a failure, apply the latest backup.
Then, on top of it, execute the activity log which includes all the
updates captured during the gap in between backups.

Since we’re taking smaller snapshots with the activity log, we can back it
up more often than we do the full database backups. Figure 4.7 provides a
visual explanation of this approach:

Figure 4.7: Filling the gaps between full backups with the action log

While it has a relatively high level of complexity, this hybrid approach can
minimize the amount of data we would lose during failure.

Designing data storage in a production system
In this chapter, we explored which kind of data works best for each type of
database. By now, you should be able to look at your data models and their

relationships and know which kind of database would be better fitted for
them.
In addition to the structure of the data models, another factor to be
considered while designing a database layer for an application is the
deployment strategy. When talking about data stores, a deployment strategy
is a way we choose to host our database. The most common deployment
strategies are as follows:

Database and application share a server
Deploy database in its own server(s)
Embedded databases

Choosing a deployment strategy
In the examples we’ve seen in this chapter, we’ve assumed that databases
are deployed into their own servers. By exploring different deployment
options, we can define architectures better suited for many use cases.

Database and application share a server
For startups or small companies, budget, or infrastructure constraints might
limit us to only being able to pay for one single server to host our whole
application.
In this scenario, we deploy both the database and the application together
on the same server. This approach brings its own set of challenges:

Single point of failure: If the shared server breaks, the whole
application will crash. If the disk fails beyond repair, we will lose all
our data.
Hard to recover: When an application runs in its own server
independent to the database server, if something goes wrong with the
application server we can take advantage of the fact that the
application itself is stateless and we can just spin a new VM or
container with a new instance of the app. If the application shares the
server with the database, it’s no longer stateless and we need to
recover through a backup.

Less available storage space and memory: Sharing a server means
sharing its resources. If the database grows too much, it might eat into
the space the application needs to correctly execute.

For all its problems, this deployment strategy has some advantages:

It simplifies maintenance: There is just one single place where logs,
data, and everything else is hosted, so it is easy to monitor and
maintain.
It reduces network latency: The communication between the
application and the database is really fast, as there is no need to send a
request through a network.
It’s (kind of) budget-friendly: We only pay for one server, though it
has to be a slightly larger server than if the database or the applications
themselves were running alone.

Unfortunately, while this deployment strategy is possible -and for some
cases the only option- it’s not advisable unless this is a non-critical or small
application.

Deploy database in its own server(s)
The most common approach is to deploy the database server into its own
server. How many servers you need depends on multiple factors which we
will discuss later in this book when we talk about distributed systems.
For now, all you need to know is that for most applications that plan to have
multiple users and grow with time, a database will need at the very least one
server for its own.

Embedded databases
Embedded databases are particularly common in mobile applications where
the client has access to the device’s file system. In mobile apps, there is a
big chance that the device will be offline as users move into areas without
network coverage.
Both Android and iOS have great support for embedded databases like
SQLite, and it’s common for mobile applications to fully make use of them.

Combining databases to approach complex use cases
Some common architectures using embedded databases showcase how two
data stores with different deployment strategies can be integrated. Take, for
instance, PouchDB and CouchDB. Both are document-based databases:
PouchDB is an embedded database while CouchDB is usually deployed to a
remote server.
The mobile app can store all data directly in PouchDB. If the device is
offline, the data will remain safely stored locally in the embedded database.
Once the device goes online, the changes will be replicated to an externally
deployed CouchDB. While the device is online, changes will be constantly
synched between both data stores. The following Figure 4.8 shows this
process at a high level:

Figure 4.8: The flow of an offline-enabled mobile app with an embedded database

The following piece of code shows how to connect to PouchDB as an
embedded database in JavaScript and configure it to automatically replicate
to a remote CouchDB instance:
var db = new PouchDB(“notes”);

db.put({

_id: “NOTE123”,

title: “TODO for tomorrow”,

content: “Do the laundry”,

});

db.changes().on(“change”, function () {

console.log(“There was a change in the database”);

});

db.replicate.to(“http://couchdb.example.com:5984/notes”);

As in every asynchronous database, this synchronization is prone to
conflicts. What would happen if, while our user is offline, someone deletes
the record they were updating?
Each database has its own strategies to resolve conflicts, ranging from
requiring a database operator to manually fix the conflict to providing
configurable strategies to merge conflicting records. You can find a link
with more information about how PouchDB handles conflicts in the
References section of this chapter.
This not-so-complicated setup allows us to tackle a pretty advanced user
requirement. As we gain more experience, we find more ways of combining
multiple types of databases to build rich systems for modern applications.

Use Case: Defining a data model for the Pizza
Place application
To end this chapter, it’s time to go back to the Pizza Place example. Let’s
revisit one specific functional requirement.

Requirement: Users should be able to see the
menu on their phones or computers
We know that the menu is a list of all the food items which are offered by
the Pizza Place, along with a description of the food items, a list of
ingredients, and a set price. We can create our first model from this
information:

1. Model: Menu:
2. Attributes:

3. - Food Items: List(FoodItem)
4.
5. Model: FoodItem
6. Attributes:
7. - Description - Text
8. - Ingredients - List(?)
9. - Price - Number with decimals

Remember, it’s important that you validate with your client that this list is
complete and accurate. Their feedback is critical to find errors early on in
the design process.
Notice that we didn’t specify which data type the list Ingredients contain.
Let’s pause for a moment to think about this attribute. How many different
ways can we represent it? We need to ask some questions about this
possible model:

Does it have attributes on its own? If it does, do they need to be
captured in the application? Do we need to capture a description or its
weight?
How many ingredients can there be? Is it a fixed number? Will we
need to add new ingredients often?

The answers to these questions will guide us to find the best
implementation for Ingredients.

No attributes, fixed size of ingredients
If the model doesn’t have attributes on its own that need to be captured, and
they always use only a few ingredients -with no plans of adding any more
ingredients soon; the best representation would be to create an enum with a
fixed list of ingredients and use its values.
The enum (or enumerated type) is a data type consisting of a set of named
values. This list is static, as shown in the following code snippet:

1. enum INGREDIENT_ENUM = {“cheese”, “pepperoni”, “no-glutten-
crust”}

2. …

3. ingredients: list(INGREDIENT_ENUM)

Only elements that are part of the enum can be added to the ingredients
list.
Pros: The advantage of using enums is that you know for sure what values
can be contained by that list. No need to add special validations for
unknown ingredients.
Cons: In order to add more values to the enums, the application needs to be
programmatically updated, compiled, and deployed again. Users cannot add
values on their own (unless they have access to the source code and
experience with software development).
For this use case: After validating with the client, we can easily see that
they need the flexibility of adding more ingredients as they see fit. Using
enums is not the best approach for this model.

No attributes, dynamic list of ingredients
If the model has no attributes, but there is no limit in the number of values
that can be added to it, the simplest solution is to use string values:

1. ingredients: list(String) // e.g. [“cheese”, “pepperoni”]

In principle, this looks similar to the enum approach. The difference is that
the values in the ingredients list don’t need to be part of any predefined
set.
Pros: Since the only constraint is that the value needs to be a string, users
can input any value for the ingredient name, and they can add as many
ingredients as they need.
Cons: The lack of a structure makes this field prone to mistakes: One user
might write pepperoni while another peperoni. If we need to search for all
the ingredients ever used, we could potentially get duplicate values.
Also, with no constraints, users can add any string, even if it’s not really an
ingredient (for example, “plane”, “fast”, “garbage”).
For this use case: This approach could work for the Pizza Place. However,
after talking with the client, we see that, since one of their selling points is
the use of fresh and healthy ingredients, they really need to care to
communicate to the public that these ingredients are locally sourced. It’s

important we explore additional models and see if we can capture this
intent.

With attributes, dynamic size
As soon as we figure out that an attribute has attributes on its own (which
also need to be captured), we know that it needs to be a model on its own.
In this case, we will capture just one extra attribute for ingredients:
description.

1. Model: Ingredient
2. Attributes: Name: Text, Description: Text
3. …
4. // store either the full ingredient instance object or a

reference to it

5.
6. ingredients: list(Ingredient)

This model allows the Pizza Place managers to describe whatever they want
to communicate for each one of their ingredients in a better way.
Pros: A full independent model allows us to capture more information
about each given attribute. And if more attributes need to be captured later,
we can expand this model.
This approach is a good middle point between enums and strings: it
provides well-formatted and validated data; it’s easier for users to add new
values (for example, they will have a user interface to add values to the
catalog of ingredients), and they still can choose from a list of correctly
named ingredients (the contents of the Ingredient table) when selecting
the contents of the ingredients list.
Cons: This approach requires extra maintenance, as it requires users to first
add the ingredients to their own table before they can add them to an order.
Also, as we add more models, the complexity of our database grows. If we
create models for everything -even if they are not needed- we’ll end up with
a bloated database that won’t perform well due to all the joins -and the
increased chance of un-optimized queries- we will need to fetch even the
simplest information.

For this use case: This approach fulfills everything our clients need for
their business cases: The menu can include why their pizzas are special and
it can express that each ingredient is local and fresh.
It’s a good trade-off in maintenance too: The Pizza Place employees are
fine with maintaining the list of ingredients. It actually gave them the idea
of extending the model to maybe, in the future, include images for each
ingredient.

Choosing a data store for storing the pizza menu
Let’s revisit some of the databases we discussed in this chapter and see
which one would be a good candidate for storing the data needed to render
a menu:

In-memory data storage: We need to persist our data, so it’s not
possible to only store our data inside memory-stored data structures.
Once we move to grow this system to make it distributed, we will
revisit in-memory data storage for using it as a cache layer, or to store
other session-specific data.
Document database: Considering the models of Menu and FoodItem
and Ingredient, we defined in this section, a document database could
be a good choice: We only have three entities, with two very simple
1:N relationships.
If we need to use a document database, we have two options:
- Storing each entity into its own table and connecting them through
their keys (e.g. FoodItem.ingredients = [“IngredientKey1”,

“IngredientKey2”])

- Denormalize and store a complete copy of each child model into the
parent document (e.g. FoodItem.ingredients = [{id:

“IngredientKey1”, “name”: “Cheese”, “Description”:

“…”},..])

The first approach keeps some level of normalization in our data at the
cost of forcing the application to do multiple queries to fetch all data
in the menu (remember, it’s not common to do join operations in
document databases).

The second approach only requires the application to do a single query
to retrieve all data, at the cost of having to maintain duplicate data. If a
name or description is updated in the catalog, the application will have
to iterate through each record in the menu to update it.
Relational database: Relational databases are good choice for this
case, as the data structure fits within the expectations of relational
data.
Expanding on the analysis done for the document database case, we
can store each entity into its own table, create relationships with
foreign keys and fetch all elements in a single join query.
Graph database: There are just not enough entities with relationships
between them to fit the case of a graph database. Sure, there is nothing
preventing us to use it, (unlike the restrictions given by in-memory
data storage), but unless you know the number of entities and
relationships will grow, you will end up never using most of the
database features.

The winner
As we can see, the database which better fits these models without
significant trade-offs is the relational database: We don’t need to maintain
duplicate data and we can fetch all data with a single query, and the data
structure and number of relationships fit really well with the database
model.
However, we can choose a document database and our application would be
just fine. As long as we know the trade-offs, we need to consider by
choosing this type of database, our application will perform well enough to
cover all expected use cases.

Scaling the database
Will a relational database scale well enough to fit the application
requirements? For this case, it does. A vertically scaled relational database
still can serve millions of queries per second, well enough to cover a
healthy growth in the number of users fetching a menu for the Pizza Place.
As we add features and the application keeps growing, we will need to
reconsider these assumptions. There is no use in expecting every

application will need to scale to hundreds of horizontally running servers
when most of them could work just fine with a single server.
But don’t worry; we will have more than enough time to discuss distributed
systems in the upcoming chapters. For now, let’s focus on creating a strong
foundation for the application to grow on.

Conclusion
In this chapter, we covered a lot of information about data: How to
represent it and where we can store it. We know that the application state is
the data that represents the contents of our application at a given point in
time.
Data is the most critical asset for any software application. We saw how it
can be stored in very fast but impermanent in-memory data structures.
These are perfect to store temporary data that needs to be quickly fetched;
caches are an example of such use cases.
We visited the definition of multiple types of databases, the kind of data that
is better suited to be stored in them. Remember, the SQL versus NoSQL
debate is over-simplistic and unfair to the rich variety of databases we have
available for so many different use cases.
Document databases are great for data with high locality and few
relationships between its entities. They require us to rethink concepts like
normalization, but the low number of relationships in its data allows them
to easily scale horizontally if demand increases.
Graph databases are great for data with a lot of relationships between
entities. In graph databases, relationships between entities are first-class
citizens, which enable them to have attributes on their own. Finally,
querying graph databases allows us to expressively explore these
relationships between data.
Relational databases have been around for many decades. They are robust
and they should not be so easily discarded. They are a middle ground
between document databases and graph databases in the context of data and
its relationships.
In the end, there is not a single database that is the best choice for all cases.
It depends on how your data is structure, how many resources and effort can

you put into scaling your database, and what infrastructure and developer
talent you have available in your team. There are too many factors to
consider in order to choose the right database, and as you gain more
experience you’ll become better and better at analyzing them all.
The good thing is that you can choose a database that is not the absolute
best for your use case and it will still work efficiently. Remember that for
years most applications used only relational databases, even if the data
didn’t make sense. Choosing the wrong database is not the end of the world,
but it will definitely make your life harder.
By this point in the book, we should have enough knowledge on how to
build a whole backend application for most simple use cases. In the next
chapter, we will focus on building quality into our application so it can be
resilient and easy to maintain.

Questions
Considering the types of databases, we saw in this chapter, which one
would you choose for each of the following applications?

An interactive demo application that will be presented as a proposal
for a new project.
An online bookstore that only handles the title and ISBN of each
book. No publishers, nor other entities.
A personal blog.
A new social network for pet owners that needs to display their pets’
profiles and allow them to befriend other users.

References
Fixing conflicts in PouchDB: https://pouchdb.com/
MongoDB’s Replica Set Oplog:
https://docs.mongodb.com/manual/core/replica-set-oplog/
MongoDB Backup methods:
https://docs.mongodb.com/manual/core/backups/
PosgreSQL backup methods:
https://www.postgresql.org/docs/9.1/backup.html

https://pouchdb.com/
https://docs.mongodb.com/manual/core/replica-set-oplog/
https://docs.mongodb.com/manual/core/backups/
https://www.postgresql.org/docs/9.1/backup.html

B

CHAPTER 5
Automating Application Testing

uilding software applications is a task that will never be completely
finished. Even in non-iterative software development methodologies

like Waterfall, it is assumed that the Software Development Life-cycle ends
in a maintenance phase, which lasts for an indefinite amount of time. There
will be always more work to do, more code to write.
As backend developers, it is our responsibility to build the code that
matches with the user’s requirements and expectations. At a high level, this
is an exceptionally difficult task: The user requirements will always change
in time, and if we want to keep complying with them, our application needs
to adapt without breaking existing features.
There is a big obstacle to adaptation: Defects. Defects are errors in our
application and can be introduced by a long list of factors: Faulty processes,
unavailable services, poorly understood requirements, inexperienced
developers, and software regressions, among many more. Defects cause our
software to not comply with our user requirements, which in turn makes our
applications lose value.
Since it is really easy to introduce defects into our application, we need to
build processes and mechanisms to prevent these errors from happening in
the first place, and to detect them if they end up happening anyways. One of
the most critical of these processes is testing.
In this chapter, we will discuss all you need to know about testing: Why it is
important, who owns that process, and how to build a good testing strategy
for our application. We will also talk about tools commonly used in testing
like mocking.
Testing is such a large and complex topic that there are full roles dedicated
to this field: We have roles for performance testing, security testing, and
compliance testing, and so on. In this chapter, we will discuss only the
topics that backend developers need to know in order to be proficient in
their own roles.

Structure
In this chapter, we will learn the following topics:

Certainty through testing
Manual testing
Automated testing
Unit testing
Integration testing with Selenium
Testing and CI/CD
Other automated tests: Static code analyzers
Defining effective test cases
Non-functional testing

Objectives
After reading this chapter, you should be able to understand the importance
of testing in the software development life cycle, how to design and write
effective tests, and how to write automated tests that can be executed
consistently and continuously.
The main goal of this chapter is for you to learn how to protect and manage
defects that can lead to economic and reputation losses in your software
application.

Certainty through testing
The idea behind testing is simple: Check whether the application works as
expected. That is a very wide and subjective criterion, though. We use
requirements, both functional and non-functional, to measure how much the
application behaves as it should. However, requirements are just reference
points.
There are multiple use cases beyond the list of requirements, that also need
to work correctly; from implicit requirements which are too obvious to be
listed (for example, the application should be available to users a majority
of time), all the way to corner cases that might have been missed from the
original requirements (for example, abusive user behavior like making too

many requests or ordering all products at the same time to block other users
from getting them).
This list of explicit and implicit requirements needs to be constantly
updated to cover newly found use cases. Using this updated list, we can
create a checklist of tests we need to perform on the application to
guarantee that it behaves as expected.
In Chapter 4, End-to-end Data Management, we discussed how often
databases should create backups. We argued that, in a perfect world, we
would need to create full backups for every update done to the database.
More often than that would be unnecessary as data would remain
unchanged from one backup to the next; and less frequently we would risk
losing data if failure happened in between the last update and the next
backup. The same reasoning can be applied to verify the correctness and
integrity of the whole application.
We need to re-execute the tests in our checklist every time we introduce a
change to our application to make sure the new changes work and no
regressions happened to existing features. If we skip one single check or
test, we risk introducing errors to the application without us knowing about
it. This is, of course, not an easy goal to achieve in practice.

Note: Regressions are defects in features that were previously
working correctly. Regressions tend to be caused by changes to the
code that affect directly or indirectly other existing features. The
easiest way to find regressions in time is to perform as many tests as
possible on every feature, even if the updates are unrelated to them.

Manual testing
When we start coding a new application and implement only one or two
features, it is easy to test all of them fairly quickly. You can make a new
code change, manually test each feature to make sure they are still working,
and then deploy the change to your users.
As the application grows, it becomes difficult for a single person to write
code and test every feature. The added complexity requires that more
people get involved; in some teams, it becomes a responsibility shared with

the whole team, other teams have people who are specialized in testing
software applications whose official role is software application tester.
What makes software testers different from regular developers is that they
have experience finding hidden corner cases that are usually ignored by
software developers and use these omissions to cause errors. The ultimate
goal of software testers is to find every defect in the application. While this
is practically impossible, a tester will try to find as many errors as possible.

Note: The nature of a software tester’s role can put their efforts at
odds with other team members.
Some software developers -and even some project managers- see
software testers as obstacles that slow down the continuous delivery of
new features to clients. This is the wrong approach, as those defects
are going to be part of the application, whether the tester finds them
or not.
Software testers are not villains who want to see the project fail, nor
humiliate developers who forget to add a validation or two. Testers
are quality assurance experts who work with both developers and
product managers to define a minimal quality standard which
guarantees that the application will be up to the user’s expectations.

Manual testing is a great way of doing exploratory testing and catching
bugs that have never happened before, and finding new use cases.

Types of manual tests
The tests we create to validate the user requirements are called functional
tests. Tests which assert specific technical characteristics of the application
like performance, security, or reliability, are called non-functional tests. As
you can see, the name of these tests match the same convention we have for
the requirements they are covering.
When we assert for conditions that follow the expected requirements, we
call these positive tests; and when we need to validate the application
handles failure cases correctly (for example, the user introduces the wrong
input, or an external system fails), we call these negative tests.

Using these two classifications, we have different types of manual testing
processes, which are as follows:

Unit and integration testing: Test individual pieces of software (like
a function) in isolation or in combination with other pieces of
software. These tests are more common in automated testing, but they
can also be done manually.
Black box testing: This refers to testing a deployed and running
instance of the application. The tester only has access to the same
features users have, with no priviledged knowledge about the
application’s source code.
White box testing: This refers to inspecting the source code of an
application to find bugs in it. No running instance of the application is
given, so testers need to only analyze the code they are given.
Grey box testing: This is a mix of White and Black box testing. This
test uses both a running instance of the application and its source code.
System testing: This is a system-wide testing performed by testers or
developers. It performs functional and non-functional tests, but it is
slightly more focused in the latter.
Acceptance testing: This phase asserts functional tests only. It is
usually divided in alpha (pre-release, done by testers and developers)
and beta testing (post-release, done by users in a real environment).
Acceptance testing tends to be the last step of testing we perform in a
development cycle.

Figure 5.1 shows how each type of testing is related to each classification:

Figure 5.1: Types of tests executed in each manual test process

Building effective manual tests
In this section, we will discuss some of simplest steps we can take to
perform manual testing like a professional application tester would do.
Obviously, application testers have the experience and skills to perform
these same steps in a more efficient way than regular developers would
usually do.
Just like in the development process, manual testing can be seen as a cycle,
as shown in Figure 5.2:

Figure 5.2: Manual testing cycle

Creating a test plan
Before we start testing our application, we need to fully define what needs
to be tested. The starting point is the checklist of tests focused in user
requirements.
Checklists are powerful tools used during manual tests. It is not a
coincidence that all sensitive jobs make use of them: Pilots, doctors,
caregivers, among others; all these professions make active use of
checklists. A checklist give us a clear understanding of what needs to be

tested, the tests we have already performed, and the tests we are to execute
yet.
In the world of application testing, these checklists are known as test plans
or test scripts.
The following is an example of the definition of a test in a test plan:
Use case: “As a [role], I need to [action_to_perform] so I can
[correct_action_result]”
Steps:
- As user [role], log into the application at [application_url]
- Select the text field marked with the [input_label] label
- Type the following string: [value_to_search]
- Select and activate the “Search” button
- Expected result: A list of results containing [expected_number] elements
should be visible in the browser window.
In addition to test cases, more information should be included in the test
plan. Depending on the policies in your team, a test plan can follow pretty
strict requirements. Some require testers to define the scope of the testing
(what is tested and what is not), the criteria to consider the testing ‘done’,
success criteria for each test, an estimation of the effort required to execute
the test plan, among other details.
For software developers, the heuristic here is to discuss with the rest of the
team how strict you want to be with the record-keeping of the test plan. In
some cases, being too rigid in the process of creating the test plan leads to a
situation where we spend more time filling all the required data for the test
plan than actually designing and executing the test itself.
For large applications, we can have many test cases. Since manual testing
has hard time constraints, you should order the list of test cases by priority.
Testing the most critical features should be at the top of the list. Optional, or
“nice to have” features should be at the bottom. In case, we run out of time
while testing, we would have at least tested the most important features.

Executing the test plan

The test plan is useless if it is not followed correctly by the person
executing the tests. Make sure that every element in your checklist is
verified. If you defined a list of steps to perform for each test case, follow
each one of them without skipping any.
By following the test plan, execution should be pretty straightforward.
However, if you identify gaps in the plan, or maybe some tests are taking
longer than expected, you can adjust the test plan in the next test iteration.

Creating detailed reports
If you plan to fix yourself all the defects you find during your test, you
might skip this step. However, it is common to find defects in code that
belongs to someone else. Or the defect we found may have already affected
users in production. In those cases, you will need to create a report as
detailed as possible.
The most important part of finding a defect is to capture the steps to
reproduce it. If a defect is not reproducible, the developer in charge of
fixing it might think it is not critical enough to be investigated.
Good reports are composed of multiple elements:

The conditions in which the error happened. Did you test using a
specific user role? Did it happen for a specific group the users only? Is
it specific to a browser or OS version?
The detailed list of steps to reproduce the problem. Describe step by
step the shortest way to get to the error. Do not skip any step, as
obvious as it might seem, as it might confuse the developer trying to
replicate the issue (for example, did you log in or not?).
Description of the expected behavior versus the actual behavior, to
make it explicit what the problem is. Include videos and/or
screenshots if available. Visual evidence communicates more than
long lists of text describing the steps to reproduce. Any extra piece of
evidence helps.

Validating fixes
Once the defect is fixed, apply the whole test plan again. If time allows it, it
is important to start again from the beginning and not skip any steps even if,

in theory, the fix would not affect some of those tests. The whole test suite
should be successful before we can call it done.
If defects can still be found, then we send them back to be fixed again.

Update test plan
After validating that all defects were fixed, we might find that the test plan
is out of date. We may also have discovered some new corner use cases
while executing the test plan. It is critical to update the test plan with this
new information so next time we have to run the test suite again we do it
from the most informed position.

Advantages of manual testing
Manual testing has multiple strengths that make it relevant, even nowadays
with all the tools we have for automated testing.
The strengths of manual testing are: Explorability, horizontal validation,
and user-centered vision.

Explorability
Humans are curious by nature. Even if application testers have well-defined
test plans and scripts, if they see something different, like a button that was
not there before, or a new feature, they will definitely try to use it.
This strength leads to finding defects in a way that automated testing would
seldom do: Without following a pre-defined plan.

Horizontal validation
Human beings also have general intelligence. This means that we are good
in generalizing knowledge and we can perceive and process things that we
originally did not mean to.
Let’s say we need a test for checking feature “A”. After some code changes,
feature A still works as expected for a given use case. However, that same
use case is now causing an error in a different feature “B” (for example, a
concurrency issue like a race condition) in the same page. If this was an
automated test focused in feature “A”, the test will report success even if
feature “B” broke.

Automated tests work by validating very specific assertions (more on this
later), and these tests will pass as long as those assertions are true, even if
other errors happened at the same time.
Let’s think of another example: We need to test whether a table in a web
application disappears when the user clicks on a button. We can write an
automated test to verify that the module is not present once the test itself
executes the action in the button. However, we could have a situation where
clicking on the button throws an error that hides the content for the whole
page. If the test only asserted for the absence of the table without checking
for the presence of other parts of the page, the test will pass. A human
tester, though, will very likely catch this issue, even if they were focused in
the table component.

User-centered vision
One of the most important strengths of manual testing is that testers can put
themselves in the position of our users. They can deduce their needs and
their intents in ways we might not have considered during design and
development.
Our users will not always behave as we expect them to. They will not
always be rational and they definitely will not always follow the right path.
Testers can understand this and account for this behavior while performing
tests.
Testers provide a human factor that automated tests just cannot replicate
yet.

Manual testing and Agile
Testing is such a critical part of software development that it has been
embedded in traditional Software Development Life-cycle (SDLC)
methodologies since many years ago. For instance, the Waterfall
methodology defines a specific phase for testing in the software
development life-cycle.
Figure 5.3 contrasts the testing phases in both Waterfall and Agile:

Figure 5.3: Testing in both Waterfall and Agile methodologies

In Waterfall, the whole team can dedicate a given amount of time to test and
validate each of the features. Only after testing is complete and all found
bugs are fixed, the application can be released.
The introduction of Agile methodologies in software development changed
the approach we have to do testing. In Agile, teams aim to deliver features
as fast as possible; each short iteration should render working, deployable
software. As your development cycle accelerates, developers might be able
to build and deploy new features in days or even hours.
For short iteration cycles, manual testing does not scale well: Testers might
be still working on executing their manual test scripts when a new change
needs to be tested.
In addition to the reduced development cycles, Agile as a methodology
does not distinguish a specialized role for software testing. It assumes that
everyone in the team will collaborate to continuously test the application.
This omission has led to many teams to remove the role of an application
tester from their teams and projects.
However, who owns the task of testing? Who must verify that the
application is thoroughly tested before a deployment? In many development
teams, this task went back to the developers. Each developer has to
guarantee that their code changes are tested and free of bugs.

In Agile, automated testing is critical as it is the only approach which will
allow us to quickly iterate and build new features with enough confidence
that the existing application elements are not breaking due these changes.

Let others test your code
The case for having application testers who perform both manual and
automated tests goes beyond thoroughness.
People who have to fix defects have a motivation to find as few of them as
possible. This is not a critique of software developers but simple human
nature: We tend to overlook things that will make our life extra-difficult,
even if we do not do it consciously.
A person whose only goal is to find defects, like a software tester, has no
such limits in motivation. They will report every single defect they find
regardless of how time consuming or difficult to fix they are.
As a software developer, you have to test your own code; you do so during
and after writing it. You create automated tests for it. However, you cannot
be the only person to test your code before delivering it to your users. If
your team has no dedicated testers, have some other developers take a look
at it.

Automated testing
We call automated testing to the process of building code to execute tests
against a software application. Writing code to test code.
We build automated tests because they are repeatable. We can execute them
multiple times with little effort and with almost no human intervention. We
can schedule them to run when we need them to, or we can execute them on
demand. Repeatable tests give reliability to the test process itself: we can be
rest assured that no tests will be missed from being executed; a guarantee
we do not have with manual testing.
In equal conditions, automated tests tend to be faster than manual tests. In
the minutes or hours it takes for manual tests to complete we could have
executed an automated test suite multiple times.
Speed and repeatability are the two characteristics we want tests to have.
They enable these tests to validate our application every time we make an

update to it.
The creation of automated tests is a responsibility shared between
developers and testers. Developers create low-level tests like unit and
integration tests, while testers typically create high-level tests like
acceptance testing, or contract testing. This distribution of work is not
fixed, of course. As mentioned earlier, some developers are in charge of
building all automated tests due the lack of roles dedicated exclusively to
testing. In other cases, application testers also build lower level tests.
As mentioned earlier, there are many types of automated tests. Let’s explore
the ones that backend developers write in our daily jobs, and at the end, we
will mention some other types which are out of the scope of this book.

Unit testing
When we build software, we make assumptions about it. If we write a
function to calculate the sum of two positive integers, we assume that the
result will always be positive. If we write a function to search for a specific
product in an online store, we assume that the result will always be an
object of the type product, instead of something else like a cat or triangle.
These assumptions give us certainty that the program will behave as we
expect it to. Just like axioms set the basis for Math, these truths are our
building blocks for more complex features.
Automated tests check these assumptions. They run the function that adds
the two positive integers and check the results; they call the search function
and verify that the response is indeed a product.
Unit tests focus on the smallest units of code in the application. Most of the
time, these units are functions. But, why do we want to spend effort writing
tests for such simple code units? In which way do unit tests help us
guarantee our high-level requirements are achieved?
The answer of these questions throws a light into the really interesting
aspect of unit tests and software itself: Software applications are nothing
else but a set of functions that are orchestrated by some other functions,
which in turn become building blocks for even higher-level functions, as so
on. We can think of this relationship as a sort of directed graph, as shown in
Figure 5.4:

Figure 5.4: Function execution graph

The functions at the top are closer to the requirements: High-level functions
like “Create order”, “find profile”, and so on. The functions at the
bottom are reusable, unit functions like “toString”, “sort”, “toList”, and
so on.
Any piece of software only works as well as the sum of its parts do. If one
single of those functions fails, the error will propagate all the way to the
top. If we can guarantee that each function at the bottom will work as
expected, we can make the same assumption about the top functions. This is
where unit tests shine: They allow us to check each function (or class) in
isolation.
The following is an example of a unit test built in Java, using JUnit, to test a
function to add in a sample class called Calculator:

1. import static

org.junit.jupiter.api.Assertions.assertEquals;

2. import com.example.Calculator;
3. import org.junit.jupiter.api.Test;
4.
5. class CalculatorUnitTests {
6. private final Calculator calculator = new Calculator();
7.
8. @Test
9. void additionTest() {

10. assertEquals(2, calculator.add(1, 1));

11. }
12. }

The major highlights for this Java code are as follows:

The additionTest function is marked with the annotation @Test,
which is just a convenient convention used by JUnit to identify tests.
assertEquals is one of the many assertions available in JUnit. Other
assertions are assertNotNull, assertThrows, and
assertArrayEquals. Libraries like AssertJ exist to provide more
human-readable assertions.
The test executes the function to test, and checks whether the result is
equal to the expected value. In this case, the test asserts that the sum of
two numbers (1+1) returns the right result.

Just to get a better mental model of unit tests, let’s look at the same test, but
using Python with unittest:

1. import unittest
2. from Calculator import Calculator
3.
4. class CalculatorUnitTest(unittest.TestCase):
5. def setUp(self):
6. self.calculator = Calculator()
7.
8. def test_addition(self):
9. self.assertEqual(2, self.calculator.add(1,1))

10.
11. if __name__ == ‘__main__’:
12. unittest.main()

As you can see, unit tests in Python retain all the key properties of the Java
unit tests: A library for testing (unittest) that provides an identifier for
tests (extending the unittest.TestCase class), a test_addition function
to contain the test logic, and an assertion to verify the result has the

expected value. All these are common facts in probably most of the unit
tests libraries out there.
Most libraries for unit testing allow you to hook into different phases of the
test execution:

setUp - Runs before each test. It is used to initialize variables and to
create instances of the objects to use during test.
tearDown - Runs after each test. All logic to clear and destroy
initialized objects can be done here.

Some tools also offer hooks which run just once at the beginning and after
all the tests in the test class.

Testing in isolation: Doubles, stubs, and mocks
Testing code in isolation is hard. The function graph we saw in Figure 5.4
shows how most functions have direct dependencies in others, and even
after refactoring to make our code as modular as possible, at least some of
your functions and classes will have dependencies in other functions and
classes.

Isolated code is easier to debug
Look at the following Python code. We can see two classes: ReportService
and PrintService. ReportService is a service used to create a company’s
report. Once the report is built, it is sent to a remote printer using
PrintService:

1. import time
2.
3. class PrintService:
4. def create_print_job(self, job_to_print):
5. # Make a network request to a remote printer
6. print(“Sending job…”)
7. # emulate doing a long, expensive call:
8. time.sleep(3)
9. # emulate a service failing with a probability of ١٠٪

10. return random.random() <= 0.9
11.
12. class ReportService:
13. def __init__(self, company_name):
14. self.company_name = company_name
15. self.printService = PrintService()
16.
17. def create_report(self):
18. print(“Building report… for

{}”.format(self.company_name))

19. job_to_print = {
20. “title”: “Report1”,
21. “company”:self.company_name,
22. “content”: “This is an example”
23. }
24. self.printService.create_print_job(job_to_print)
25. is_printed =

self.printService.create_print_job(job_to_print)

26.
27. if is_printed == False:
28. raise Exception(“Could not print the report. Try

again later”)

29.
30. return job_to_print

For this preceding example, to simulate that PrintService is the actual
implementation connecting to a real network. For this, we will introduce
some emulated behavior:

Network-based services have added latency. We introduce a wait time
of 3 seconds to emulate a long network call.
Calls to external services can fail without us having any control of it.
The create_print_job returns True 90% of the time, while it returns

False 10% of the time, simulating a service which works correctly
most of the time, but it fails unexpectedly some of the time.

If create_print_job returns False, we need to throw an exception so users
know the operation failed and they will need to retry the action. We could
have handled it in a different way (like retrying the action) but we will keep
it simple for this example.
Now, let’s build a test class to assert the report is generated correctly. For
now, we will only add one assertion to verify the company name returned in
the report is correct:

1. import unittest
2. from ReportService import ReportService
3.
4. class ReportServiceUnitTest(unittest.TestCase):
5. company = “Company 1 Co.”
6.
7. def setUp(self):
8. self.report_service = ReportService(self.company)
9.

10. def test_addition(self):
11. report = self.report_service.create_report()
12.
13. self.assertEqual(self.company, report[“company”])
14.
15. if __name__ == ‘__main__’:
16. unittest.main()

After running this test class, we should see one of the following results in
the console. If the PrintService is up and working, your test will pass:
python % python -m unittest ReportServiceUnitTests

Building report… for Company 1 Co.

Sending job…

.

--

Ran 1 test in 3.004s

OK

Notice the line ran 1 test in 3.004s. We can see our artificial wait reflected
in there. For a single example, this does not look too bad, but when your
test suite has hundreds of tests, the total time it will take to run will go from
many seconds to several minutes.
But if PrintService is down (again, simulated with a random value), the
test will fail with an error similar to the following (some lines were
removed for brevity):
python -m unittest ReportServiceUnitTests

Building report… for Company 1 Co.

Sending job…

E

==

========

ERROR: test_addition

(ReportServiceUnitTests.ReportServiceUnitTest)

--

…

Exception: Could not print the report. Try again later

--

Ran 1 test in 3.006s

FAILED (errors=1)

This instability in the results is caused by not testing the ReportService in
isolation: Any error that affects PrintService will propagate to
ReportService. For instance, let’s simulate a connection error in
PrintService as follows:

1. class PrintService:
2. def create_print_job(self, job_to_print):
3. raise Exception(“Connection error”)

Run the tests for ReportService again and you should see the following
result:
python -m unittest ReportServiceUnitTests

Building report… for Company 1 Co.

E

==

========

ERROR: test_addition

(ReportServiceUnitTests.ReportServiceUnitTest)

--

Traceback (most recent call last):

 File “ReportServiceUnitTests.py”, line 11, in test_addition

 report = self.report_service.create_report()

 File “ReportService.py”, line 19, in create_report

 self.printService.create_print_job(job_to_print)

 File “ReportService.py”, line 5, in create_print_job

 raise Exception(“Connection error”)

Exception: Connection error

--

Ran 1 test in 0.000s

There is technically nothing wrong with ReportService, but its tests are
still failing. In this example, it is really clear where the problem is, but in a
real-life application, we would spend a lot of time trying to find what is
wrong with ReportService when in fact there is nothing wrong with it.
Again, all this is because we are not testing the functionality in isolation.
We cannot remove external dependencies just for the sake of testing. The
best we can do is force these dependencies to behave in a way that they do
not interfere with the tests we are running.

Isolating test dependencies
When building unit tests, we need function calls to external dependencies
like PrintService to behave in two ways: They need to be fast (in general)
and deterministic.

A deterministic dependency is that whose behavior does not change
unexpectedly: For a given set of parameters to the dependency functions, it
will always return the same result. In the case of ReportService, the real
implementation of PrintService.create_print_job is not fully
deterministic: The function can take longer to run if the network is slow, or
it can fail if the network has connection issues. Non-deterministic
dependencies lead to difficult-to-debug issues: If ReportService has a bug
where it does not handle failures from PrintService correctly, we will only
find this issue when, by coincidence, the actual service fails.
In addition to determinism, we need dependencies to run as fast as possible
so we can execute our tests repeatedly. Developers often skip long tests, and
these tests become a burden in the long run.
The first change we need to do in ReportService is to move the instance
creation of PrintService out to make our code as modular as possible. In
Chapter 3, Designing APIs, we did something similar so that we can inject
different implementations of the same interface.

1. class ReportService:
2. def __init__(self, company_name, printService):
3. self.company_name = company_name
4. self.printService = printService
5. #…

We now pass the printServer instance through the class constructor. The
tests setUp hook must be updated too:

1. class ReportServiceUnitTest(unittest.TestCase):
2. company = “Company 1 Co.”
3.
4. def setUp(self):
5. print_service = PrintService()
6. self.report_service = ReportService(self.company,

print_service)

7. #…

Probably, this talk about injecting different implementations is giving you a
hint of what we will do next.

Test stubs
Using dependency injection again, we can create a stub implementation of
PrintService called FakePrintService, and inject it into ReportService
instead of injecting the real service:

1. class FakePrintService:
2. def __init__(self, company_name):
3. self.company_name = company_name
4.
5. def create_print_job(self, job_to_print):
6. print(“This is a fake class”)
7. return self.company_name == job_to_print[“company”]
8.
9. class ReportServiceUnitTest(unittest.TestCase):

10. company = “Company 1 Co.”
11.
12. def setUp(self):
13. print_service = FakePrintService(self.company)
14. self.report_service = ReportService(self.company,

print_service)

15.
16. #…

If we are using an interface for defining the service API, we would need to
implement it in the stub implementation. The stub implementation exposes
an API identical to the real service: One single function create_print_job
with the same parameters and return type. ReportService gets the instance
of FakePrintService and uses it without worrying if it is the real
implementation or not.
In contrast with the real service PrintService, the stub will return True if
create_print_job is exactly called with the expected company name.

Otherwise, it will always return False. No network latency, no unexpected
errors beyond our control.
You can think of stubs as hardcoded responses for specific parameters. We
can make the stub as complex or simple as we want it and control exactly
what it returns. We can simulate errors and special conditions that would be
very difficult to replicate using the real implementation.
Execute the tests using FakePrintService as many times as you want to,
and you will see the following results confirming our assumptions of
determinism and speed.
python -m unittest ReportServiceUnitTests

Building report… for Company 1 Co.

This is a fake class

.

--

Ran 1 test in 0.000s

Our test is passing again and ReportService will execute all its code
correctly; except this time we will not see the time delay introduced by the
real PrintService, as we do not depend on network calls anymore or any
real business logic unrelated to ReportService. This test will consistently
pass 100% of the time, as long as the stub keeps receiving the expected
inputs.

Test mocks
Within the application’s code, there are cases where we only call a service
in a specific situation. We might only want to generate reports if a given
condition is true:

1. #…
2. if should_print_report:
3. is_printed =

self.printService.create_print_job(job_to_print)

4. #…

These use cases are tricky to test. Imagine there is an error in
create_print_job, but execution never reaches to that function because a

separate condition causes should_print_report to always be false.
Existing tests will still report success even if this error exist because a
service that is not called cannot fail. To confirm whether the test is
successful and create_print_job is called, we will use mock objects.
For this example, we will use Python’s MagicMock, which is defined in the
unittest.mock package, included by default in Python 3. The following
tests show how we can create mock objects of PrintService:

1. import unittest
2. from unittest.mock import patch
3. from ReportService import ReportService, PrintService
4.
5. # …
6.
7. class ReportServiceUnitTest(unittest.TestCase):
8. company = “Company 1 Co.”
9.

10. #…
11.
12. @patch(‘ReportService.PrintService’)
13. def test_create_report_calls_print_service(self,

mock_print_service):

14. mock_print_service.create_print_job.return_value =
True

15. self.report_service = ReportService(self.company,

mock_print_service)

16.
17. report = self.report_service.create_report()
18.
19. self.assertEqual(self.company, report[“company”])
20. self.assertEqual(mock_print_service.create_print_job.

call_count, 1)

21.
22. @patch(‘ReportService.PrintService’)
23. def test_create_report_not_call_print_service(self,

mock_print_service):

24. self.report_service = ReportService(self.company,

mock_print_service)

25.
26. report =

self.report_service.create_report(should_print=False)

27.
28. self.assertEqual(self.company, report[“company”])
29. self.assertEqual(mock_print_service.create_print_job.

call_count, 0)

30.
31. #…

The highlights of these tests are as follows:

@patch(‘ReportService.PrintService’): This annotation indicates
to unittest that this test should inject an instance of that class into the
a parameter of the test function (mock_print_service).
print_service.create_print_job.return_value = True: In this
line, we are configuring the mock function create_print_job to
always return True.
self.assertEqual(mock_print_service.create_print_job.call_c

ount, 1): This assertion checks whether create_print_job was
called exactly once. The attribute call_count in the mock function
indicates the number of times the function was called, and the second
parameter “1” is the number of expected calls.

Notice how we did not have to create a fake implementation of
PrintService, as the mocking library created it for us. Since we provided
the path to the class to be mocked in the @patch annotation, the library
knows exactly what the API for the mocked services should be.

For the sake of completeness, the following code snippet shows us how we
can mock a class method in Java using Mockito:

1. // Create mock instance:
2. PrintService printService = mock(PrintService.class);
3.
4. // Mock the function createPrintJob to always return true:
5. when(printService.createPrintJob(anyBoolean())).thenReturn(

true)

Stubs versus mocks
In many development teams, you will hear the terms “stub” and “mock”
used interchangeably. Most of the time this is not much of a problem, as
both concepts have more or less the same goal.
The difference between a stub and a mock is displayed in the examples of
the previous section:

Stubs are implementations of a class or function that provide pre-
configured or “canned” responses to specific parameters. In our
example, we hard-coded our stub to always return the same result for
the exact same set of parameters (the company field in the report).
Mocks inspect behavior. In addition to the same pre-configured
responses stubs return, mocks allow tests to assert information about
the mocked method: The number of times it was called, the parameters
it received, and so on. All without having to manually implement
these conditions in the mock object.

Other common concepts in the field of test doubles -everything related to
the creation of fake objects for test purposes– are as follows:

Fakes: They are similar to stubs, but they do offer a semi-working
implementation (for example, using an in-memory database instead of
a remote database server).
Spies They are similar to mocks, as spy’s assert behavior: Number of
calls, parameter values, among others.

More than independent categories, fakes, and spies are like profiles of stubs
and mocks: Stubs are fakes if they include a reduced version of the real
service’s logic, and mocks behave like spies when they assert behavior.

Coverage
Code execution can be represented as a tree: When the application reaches a
condition (IF, ELSE, WHILE, SWITCH, exceptions and so on), execution
will be divided in at least two ‘branches’ or paths: One where the condition
is true, and the other were it isn’t. This situation leads to developers having
to write multiple tests for the same function: one for each execution path.
Coverage is a metric often used by developer teams to measure the quality
of their existing automated tests. Each test covers an execution path in the
code to be tested; the percentage of lines of code that are in that path is the
coverage percentage that the test has.
To understand this concept in a better way, let’s run the coverage tool
coverage.py:
coverage run -m unittest ReportServiceUnitTests

coverage html -d coverage_html

Figure 5.5 shows the results of the coverage report. Notice the red lines,
which is how the report displays lines without coverage:

Figure 5.5: Test coverage with non-covered code branches

Since PrintService is not being tested (but it is defined in the same
module file), all its lines are red. Also, line 30 for ReportService is marked
in red. If we take a look at our existing tests, we will see that none of them
is covering the use case where should_print=True and create_print_job
fails (or, what is the same, returns False). All this untested code brings us
down to a coverage of 79%.
If we want to expand our coverage by testing the use case where
create_print_job returns False, we can write another test:

1. @patch(‘ReportService.PrintService’)
2. def test_create_report_throws_exception(self,

mock_print_service):

3. mock_print_service.create_print_job.return_value =
False

4. self.report_service = ReportService(self.company,

mock_print_service)

5.
6. with self.assertRaises(Exception) as context:
7. self.report_service.create_report()
8.
9. self.assertEqual(‘Could not print the report. Try

again later’, context.exception.args[0])

In this test, we use self.assertRaises(Exception) as context: to tell the
test that we are expecting create_print_job to actually fail. This test then
will confirm at the end that the expected message -’Could not print the
report. Try again later’ is returned in case of an error within
PrintService.
If we re-run the tests, and check the coverage report in
./coverage_html/index.html, we will see something similar to Figure
5.6:

Figure 5.6: Test coverage after adding a new test

Notice that the red mark is gone from line 30, and our test coverage went up
to 84%. If our code fails to handle errors in PrintService, we now will be
able to catch it in tests.

To use coverage or not to use it
As mentioned earlier, many teams use coverage as a measure of code
quality. However, as we saw in our example, a score below 100% does not

mean we are missing code to test; in our example, the missing percentage is
given by code that is clearly not the subject of the test.
There is a high cost to try to achieve 100% coverage, and it brings
diminishing returns: Some code has little impact and it is just too hard to
test (for example, deeply nested branches), or too straight-forward (for
example, getters and setters for classes attributes). Writing tests for this kind
of code will increase coverage and maybe catch some very uncommon
bugs, but they will rarely find anything critical and they will just bloat your
test code base.
While reaching 100% would be amazing, if you plan to use coverage as a
quality metric, you will get better results if you aim for a reasonable value
between 80% and 90%. Else, developer productivity will be significantly
slowed down by having to write too many tests that have little to no value
in the task of capturing critical defects.

Test-driven development
Testing is an action that is deeply intertwined with coding. As you build
new features into your application, you are continuously testing code you
just wrote to confirm it works as expected.
Test-Driven Development (TDD) was born out of the idea that all code
should be covered by automated tests. The best way to guarantee this test
coverage is by first writing tests, then writing code that makes those tests
pass.
TDD puts the actual use case before the code itself: By writing the tests
first, you make sure you only implement code that will actually be used.
When code is not necessary, it becomes really difficult to write tests for it,
making TDD a good way to detect unnecessary work.
In a TDD-ideal world, developers will always follow the next three steps
when developing new features:

Write a unittest for the new feature, before you actually write the
function’s implementation. The test will fail, and that is expected. In
fact, TDD experts argue we should always start with failing tests.
Write just enough code to make the test pass.
Repeat starting from the first step for the following feature or use case.

In the real world, it is not always possible or optimal to follow these steps
in a rigid order. Some features require you to write the code and see how
the code interacts with the rest of the application before you can define its
interface structure.
The intent of TDD is the correct one, though. It is easier to write unittests at
the same time you are building the implementation for a feature, than it is to
create “tech debt” and try to return weeks or months later -when you barely
remember how exactly your code worked- to write those tests. With TDD
we introduce quality proactively, instead of reactively (when errors actually
happen).
TDD forces us to think about all the different corner cases that a piece of
code could encounter. When we think of features from the point of view of
a tester, we gain a richer insight into how to make our code more robust and
resilient to unexpected input or problems.

Integration testing with Selenium
As we cover most of our code using unit tests, the next logic step is to test
how all those units interact with each other.
One way we can test the interaction between functions is to leverage the
same unit testing libraries (for example, JUnit, unittest) and write tests to
only cover the integration between a couple of components; if there are
more external dependencies than those, we can mock them as we already do
in unittests.
Another alternative is to write tests emulating users interacting with a live
instance of the application. These tests are called integration tests.

Note: Some frameworks have different names for these tests. For
instance, to tests that are executed directly in a semi-live version of
the user interface, the JavaScript framework Ember.js calls them
“acceptance tests”.
Regardless of how the tool you are using calls them, integration or
acceptance tests are the ultimate tools to verify that the application
behaves as a user would expect it to.

In integration tests, we write the code that simulates the steps a real user
would execute in the actual application: fill an input field, click on a button,
and click on a link to navigate to a different page, among others. Once the
test completes all the steps in the use case, it can assert for the existence of
certain conditions, visual elements, or text.
For instance, imagine a web application that provides access to the same
reporting service we discussed in the previous sections. This web
application also provides a page to search for existing reports for a given
company. The user interface can be seen in Figure 5.7:

Figure 5.7: The search page for the Report Generator app

In order to see the list of reports, a user would have to execute the following
steps:

Open the web application in a browser.
Fill the search field with a string containing the company’s name.
Click on the Search button.

Then, a table containing all available reports for the company will be
displayed. Figure 5.8 shows the end state after executing each step in the
use case:

Figure 5.8: A table containing the results of a search for company results

In manual testing, a human application tester would execute these steps by
hand, and log the end result. We can approach this same action using an
automated integration test.
For this section, let us use Selenium with Python. Selenium is a tool that
allows developers to write automated tests which run on browsers and
simulate the interactions of a real user with a live instance of the web
application.
The following code snippet is a Python program using unittest as the test
runner, but using Selenium with a Chrome browser:

1. import unittest
2. from selenium import webdriver
3.
4. class IntegrationTest(unittest.TestCase):
5. def setUp(self):
6. self.driver = webdriver.Chrome(‘./chromedriver’)
7.

8. def test_integration(self):
9. driver = self.driver

10. driver.get(“http://localhost:8000”)
11.
12. self.assertEqual(“Report Generator”, driver.title)
13. elem = driver.find_element_by_id(“company-search-

field”)

14. button = driver.find_element_by_id(“search-button”)
15. elem.clear()
16. elem.send_keys(“Company 1”)
17. button.click()
18. self.assertIn(“Found 2 results”, driver.page_source)
19.
20. def tearDown(self):
21. self.driver.quit()

Again, let’s talk about the highlights in this code. For that, let’s break it up
in sections:

1. import unittest
2. from selenium import webdriver
3.
4. class IntegrationTest(unittest.TestCase):
5. def setUp(self):
6. self.driver = webdriver.Chrome(‘./chromedriver’)
7.

In the test’s set up, we call webdriver.Chrome(‘./chromedriver’) to
create a browser instance. The string parameter (./chromedriver) is the
path to the browser’s web driver; in this case we use the driver file for
Google Chrome, which is local to this test file. Usually, this driver file
needs to be downloaded before running the tests.
Then, the test navigates to the application’s URL (localhost:8080) and
checks whether the page has the correct title, “Report Generator”:

8. def test_integration(self):
9. driver = self.driver

10. driver.get(“http://localhost:8000”)
11.
12. self.assertEqual(“Report Generator”, driver.title)

The next step is to get a reference to both the input element and the search
button. We use the HTML ID attribute to create a reference to them:

13. elem = driver.find_element_by_id(“company-search-

field”)

14. button = driver.find_element_by_id(“search-button”)

Notice how Selenium’s API is very similar to the DOM API in JavaScript:
We have methods to getting elements by ID, by class, or by query selector.
Once we have a reference to these elements in the page, we can delete
whatever text might exist in the text input already, add some text to the
same input field with the name of a company, and then click on the search
button:

15. elem.clear()
16. elem.send_keys(“Company 1”)
17. button.click()

As the test executes, you can see the elements in the page within the
browser window being updated.
In the end, we assert that the page displays a text message which confirms
the search operation was successful. After the test is complete, we close the
browser window:

18. self.assertIn(“Found 2 results”, driver.page_source)
19.
20. def tearDown(self):
21. self.driver.quit()

If we execute this test and all assertions pass, we will see a success message
as follows:

python -m unittest IntegrationTests

.

--

Ran 1 test in 3.051s

OK

Once again, notice the time it took to execute the test: Around three
seconds. In this case, this is something expected as Selenium tests take
longer to run: A new browser window needs to be instantiated, and the test
then needs to wait for all resources and network calls to complete at each
step of the test. Actually, we can expect these tests to last longer, all things
considered. The advantage of these tests, though, is that we get to test the
same functionality a user would have access to, end to end.

Defining a test environment for integration testing
Integration tests using real services face the same challenges as unit tests
do: Real services can fail, and network latency takes extra time. Just as we
used mocks in unit tests to make our tests deterministic and fast, we need to
do something similar for integration tests: Create a test environment.
Test environments are live instances of the application, but running with test
data. Just as fakes in unit tests, these test environments rely on simpler
instances of internal services like databases and calls to external services
are stubbed to isolate only services defined within the application.
Some applications are small enough that a new instance of the application
can be created before integration tests are executed and teared down once
the tests complete. Other teams may decide that they will keep just one
instance of the test application running and have integration tests access it
remotely.
Test environments have extra advantages: We have full control of the data
in the test environment. We can create data for specific test cases which
might not be common in production: Reports with missing or wrong
information which should trigger validations in certain application modules,
reports whose attributes contain text with the maximum allowed character
length to help us confirm the UI can deal with handling that condition, and
so on.

Simulate a test environment close to production
While test environments give us the flexibility to create data for testing
corner cases, it is important that it does not deviate much from the real
production environment.
You want developers and testers to work with an environment that is the
closest possible to what end users will experience; this is to avoid providing
an experience which is significantly different from what developers tested.

Testing and CI/CD
Continuous Integration and Continuous Deployment (CI/CD) is an
automated process that allows developers to deploy each change done to an
application with little to no human intervention: A developer commits code
changes to a source code versioning system like Git, and the CI/CD pipeline
takes care of checking out the code, executing tests, and deploying to a
production environment, assuming each step is successful.
Automated tests are a key part of the CI/CD flow: They enable CI/CD
pipelines to verify that the code we’re about to deploy is mostly free of
errors. Without automated tests, the deployment process would have to be
paused until an application tester can complete all manual tests. Figure 5.9
shows a common process for validating each step of a CI/CD deployment:

Figure 5.9: Validation of deployments using automated (green) and manual (orange) testing

The complete process of CI/CD is a topic we will explore more in depth
later in this book.

Other automated tests: Static code analyzers
In addition to unit and integration tests, software developers have other
automated tools that help us find quality issues in code. One of such is

static code analyzers. These tools parse the application’s code and search
for specific patterns which that indicate quality issues. Some of those
quality issues are as follows:

Security issues like Cross-Site Scripting (XSS), Cross-Site Request
Forgery (CSRF), SQL injection, user/passwords stored in plain text,
and so on.
Unused/dead code
Deeply nested if blocks
Calls to deprecated functions
Bad code practices (lack of validation, unused import statements)

Some popular code analyzers are linting tools like JavaScript’s eslint or
Java’s Checkstyle, FindBugs, or Emma.

Defining effective test cases
Once we are familiar with all the tools we have for writing automated tests,
it is important to think about what to test. As we have mentioned repeatedly
in this chapter, user requirements are a good starting point to define good
test cases. However, we need some extra guidelines to build quality tests
which provide value instead of being just an obstacle developers need to
bypass to get a deployment.

Defining a single use case per test
Tests should be units of work that are dedicated to verify individual test
cases. This rule not only applies to unit tests, but to every type of automated
tests..
For instance, if the application provides controls to both create, update, and
delete reports, you might feel tempted to run one single test to cover all the
three actions. While a test like this could save some time and space, it
would also be asserting a very specific use case where the user performs all
three actions, always in the same order.
Tests with multiple use cases in a single test make it more difficult to reason
about the test results: If there is an error, which action actually failed? Is the

error only reproducible after executing each action in the exact same order?
Or is the error only reproducible when a subset of the actions is executed?
We should write a single test for each of the actions. Actions like “update
report” and “delete report” might depend on the “create report” action, so
they cannot be split so easily, but “update report” and “delete report” can
be put into their own tests.
Testing single use cases help us reason about test failures. We know exactly
how to replicate the issue so we can fix it later; and by having just the
required steps for that very specific use case, we can isolate the exact cause
of the defect faster.

Do not mock everything
Mocks and stubs are really useful, but using them in excess can lead to a
test set that provides no value at all. Beyond enabling the testing of other
functions and classes, mocks and stubs provide no intrinsic value to the
tests. Writing too many mocks can lead to tests that, ironically, don’t test
any real code.
Also, not everything needs to be a mock. Somethings it is easier to write
simple stubs with empty implementations than having to configure a test
mock library. The simpler your tests are, the easier it will be to maintain
them in the long run.
Mocks and stubs should be used as needed. Some developers even consider
having to use too many mocks to be a code smell: It may indicate that the
code is not modular enough and it has too many tightly-coupled
dependencies.

Note: Search term: code smell
Code smells are red flags in our application that are not problems by
themselves but indicate a larger problem lurks nearby

On equal conditions, prefer unit tests over
integration tests

Unit tests are faster than integration tests. If a use case can be tested using
either of them, we prefer to implement it using unit tests.
If we end up with too many integration tests, the whole test suite might take
too long to execute and developers will stop executing it at every code
change.
However, if we cannot avoid having integration tests that take too long to
run, there are tools we can use to schedule them to run after a deployment:
While it is not the best approach, it does help us confirm the deployment
went correctly. If an error is found, then we can always revert to an older,
more stable version.

Non-functional testing
Some technical areas are critical for software applications: Performance,
security, accessibility, among others. Independent teams are created to
analyze and test that software applications meet quality standards for these
areas. While most backend developers will not perform in-depth testing in
most of these areas themselves (and thus are out of the scope of our book),
it is important to mention them.
Testing of these non-functional areas are commonly outsourced to external
teams, even to other specialized companies. Something that every senior
developer understands is that you cannot be expert in every area, so it is
important to delegate work to those who are.
Let us briefly discuss some of these areas of non-functional testing to make
sure we understand their importance.

Application security and penetration testing
The area of application security includes many sub-areas which experts on
the topic assert for software applications. Some of the tests done are as
follows:

Penetration testing: Finding and exploiting vulnerabilities in
applications to gain access to restricted information or to user accounts
with more privileges. Penetration testing can be performed with a mix
of manual exploits and automated tools.

Thread modeling: Design a model of all the areas in an application
which could be subject of security attacks. Each risk is associated with
a criticality of a possible breach and how easy it is to replicate the
exploit to assess severity.

Load testing
Load testing is performed to assess how well an application responds to
surges in traffic. It also provides development and infrastructure teams of
details like:

In average, how many concurrent users the application can handle.
What’s the maximum number of queries per second (QPS) our severs
support? At what percentage of load do we need to start spinning new
servers?
Which features break first when the load takes the application to its
limits?

Understanding how the application behaves when it cannot take any more
traffic help us developers to design better architectures, graceful
degradation plans, and so on.

Performance testing
Very similar to load testing (some practices even merge both of them under
the performance-testing umbrella), performance testing allows us to
examine how fast and stable the application is.
Performance testing helps us find parts of the application which could work
more efficiently and improve metrics like load time.

Accessibility testing
If you want your applications to reach as many users as possible, you want
to make sure they are accessible. Accessibility testing checks whether the
application’s user interface is built in a way that it can be used by any user,
regardless of any condition or disability they might have. Many times, for
an application to be accessible it means that it must be compatible with

adaptive devices like screen readers, special keyboards and mouses, high-
contrast mode, zoomed-in, mode, among many more conditions.
Accessibility testing can be performed as a white box test to verify that the
code is built with all the standards required for the application to be
compatible with assistive devices and applications to work correctly.
Black box and manual testing using those assistive devices is also common.
An accessibility tester navigates the user interface using these devices and
modes, reporting any feature that might be unreachable or unusable.
It is critical to understand what challenges users with specific conditions
and backgrounds may face while accessing our application, and the tools
they use to overcome these challenges. Even better, you can get users or
developers who actually use these assistive technologies in a daily basis to
work on your project to better understand their needs.

Conclusion
Testing is a very critical high-level field of software development. As long
as we make changes to an application, testing will be required.
Testing helps us find defects in our application. These defects my cause our
application to not perform according to our users’ requirements and
expectations. Testing before and after each deployment is a good process
that will help us gain certainty about the application’s quality and
performance.
As a backend developer, it is your job to write unit and integration tests. In
addition to your own testing, you want other developers and specialized
testers to review and test your code, as it will increase your code’s quality..
Automated tests can check the code at a low, unit-specific level, like unit
tests, or it can assert whole features through integration tests. Both types of
tests are tools we have to more easily detect and fix errors in our
application.
While automated testing is necessary -especially in Agile-based teams, and
projects with quick iterations and multiple deployments- it is not a full
replacement of manual testing. Manual testing will always provide extra
value that is very difficult to find by only using automated tests.

In unit tests, we test the code in isolation, which sometimes is difficult to do
due all the dependencies we have between functions, classes, and services.
Mocking and stubbing are techniques to isolate specific functions and
classes so we can test their business logic without having external
dependencies affecting the results of our tests.
As a developer, it is critical you focus in building a robust test set which can
be deterministic and run quickly. Concentrate on building tests that bring
value to the application, and not just creating tests for meeting metrics
goals, like high coverage percentages.
In this chapter, we introduced the topic of application security and how
critical it is to assert it is applied correctly for building robust software
applications. In the next chapter, we will evaluate how we as backend
developers fit in the area of application security .

References
JUnit’s user guide: https://junit.org/junit5/docs/current/user-guide/
Unittest documentation:
https://docs.python.org/3/library/unittest.html
Selenium documents: https://www.selenium.dev/documentation/
Mocks aren’t stubs, by Martin Fowler:
https://martinfowler.com/articles/mocksArentStubs.html

https://junit.org/junit5/docs/current/user-guide/
https://docs.python.org/3/library/unittest.html
https://www.selenium.dev/documentation/
https://martinfowler.com/articles/mocksArentStubs.html

P

CHAPTER 6
Securing Applications

rotecting users’ information should be one of the main principles of any
software developer. Not only we owe it to our users who trust us with

their information; but not taking application security seriously can have
serious economic, legal and reputational consequences.
In this chapter, we will review how your application’s data might be at risk:
What are the ways in which malicious actors can negatively impact your
user’s data. Then, we will explore simple but effective practices that prevent
your user’s data -and your own- from being compromised.

Structure
In this chapter, we will learn the following topics:

The CIA triad: Confidentiality, Integrity, and Availability
Access Control: Authentication and authorization
Use case: Implementing basic authentication and authorization for the
Pizza Place app
Federated authorization
Building security in the application’s design
OWASP Top 10: The most common vulnerabilities

Objectives
After reading this chapter, you will have a good understanding of the
multiple techniques’ backend developers can use to secure their
applications.
This is not an in-depth guide to application security or penetration testing.
This chapter focuses in the defensive practices any software developer
needs to know.

At the end of the chapter, you will have a better knowledge about the
following: The intrinsic value of data and how that value could be at risk.
How to protect private data from being accessed by unauthorized users?
How to protect data from being accessed or modified by users who don’t
have the right privileges? The best practices used while implementing
authentication and authorization checks. How to assess the risks that your
application could be exposed to in a better way?

The CIA triad: Confidentiality, Integrity, and
Availability
In Chapter 4, End-to-end Data Management, we discussed that data is the
main asset for any software application. In order for data to keep its latent
value, it has to retain certain properties. If any of these is not present, then
the data loses its value; it might even become useless.
Among those properties, the most critical are the CIA triad: confidentiality,
integrity, and availability.

Confidentiality
All data have an audience: A set of actors, human or not, who needs to
access or modify the contents of the data. Data should only be available to
its intended audience. Confidentiality is the value of enforcing that data is
only available to its audience, and not to everyone else.
The audience can be unrestricted or it can include just one person (most
probably, the owner or creator of the data). When there are no restrictions
on who can read a set of data, we call that level of confidentiality public.
When the audience includes only a very limited set of actors (only the
author, or just a limited set of people), we refer to that confidentiality level
as restricted or confidential.
Publicly facing websites are usually considered to be public, while internal
applications or log-in protected applications can be seen as restricted or
confidential. The same happens for data like presentations or documents.
Many companies define their own confidentiality levels so they can label all
the documents and resources they create. These labels help employees

identify when they are dealing with highly-sensitive, restricted data, and act
accordingly to protect its confidentiality.

Loss of confidentiality
There are many consequences when a confidentiality level is not respected.
Some data’s value is completely based on it being confidential (think of
industry secrets, documents describing competitive strategies, and so on)
and by losing its confidentiality guarantees it will also lose its value.
Exposing information like personal data to people beyond the expected
audience has dire consequences for the owners of the data: From losing a
job or having their insurance premiums increase due to discrimination
based on an underlying medical condition, all the way to being an easy
target for hacking thanks to the close relationship between personal data
and access information to multiple services (for example, social security
numbers, answers to security questions, and so on).
These kinds of leaks also have huge consequences to us if we fail to protect
our users’ information: Loss in revenue, loss of users, reputation damage,
legal consequences, and so on.
High profile data leaks and hacks in the past few years have resulted in
losses of millions for the businesses who were involved. These events are
nothing else but confidentiality being breached and losses have been
reported to be as high as $1.6 million dollars.
On a more specific context of software development, certain information
depends on being confidential so the application can work as expected:
Things like passwords, recovery and encryption keys, security questions,
and so on. If any of these restricted things were to be revealed to a wider
and unintended audience, the correct behavior and value of the application
could be at risk.
Even data that might not seem specially confidential to you, it might be
critical for the owner. Confidentiality is defined completely by its context
and the relationship it has to its owners.

Integrity

Data has to be truthful in order to retain its value. If the data becomes
corrupted as a result of being manipulated incorrectly, or due a faulty
process, it will lose its value.
For data to retain its integrity, it should only be modified by the audience
defined by its confidentiality level, and through the expected processes (for
example, if the data was expected to be stored as a binary file, it should be
serialized and deserialized with the correct tools).
Data will lose its integrity if it is modified by actors outside of it intended
audience; or when it is modified by processes that are not the intended by
the owners of the data and the application.
Integrity is not only related to how the data is modified, but to how it isn’t.
Data at rest shouldn’t change or be corrupted by external elements like
malicious actors (for example, hackers) or faulty infrastructure (for
example, bad hard drives with no redundancy).

Loss of integrity
Data you cannot trust is data that has no value. The problem with integrity
loss is that it not only affects the corrupted data, but all data related or even
just locally close to it.
Think of this: If someone gave you a bag full of candies, but that person
told you “one of these is contaminated, but I don’t know which”, would you
risk eating any of the candy? Issues with data integrity are not different; you
can try to find which part of the data is correct and which isn’t, but the
overall trust of the whole data set is considerably reduced.
From a business perspective, incorrect data can lead to taking bad business
decisions, and even direct customer and financial loss.
Integrity loss also affects applications themselves. If the data that conforms
the application database contents, configuration files, or even source code is
incorrect, all the data produced by the application will also be incorrect.

Availability
Data needs to be available when its users and owners need to access it.
Information that cannot be accessed has no value.

While it’s understandable that data might be temporarily unavailable at
specific moments (for example, while the application is under
“maintenance”), users expect a continuation of service: If the data is
unavailable, it has to be for very short periods and not at critical moments.
For instance, commercial users expect a bank application to be up at least
during office hours, when they conduct business; any downtime beyond that
will be unacceptable.

Loss of availability
We don’t tend to relate availability with application security, yet the most
common “cyber-attacks” are Distributed Denial-of-Service (DDoS),
which consist in saturating the incoming traffic for an application with
artificial requests, causing it to reach its limit and break down. Again, each
of those incidents ends up in millions in lost revenue simply because users
cannot use the application. Users who cannot use our application are users
who will take their business somewhere else and never return.

Access Control: Authentication and authorization
All the data within an application needs to be secured according to its
confidentiality, integrity, and availability requirements. The most common
violations to the CIA triad happen because users perform unauthorized
actions on an application’s data; so it’s critical to set an access control
workflow in place.
Access control can be broken down into authentication and authorization.
When a new user tries to access the application, we need to make sure they
have the right authorization level to do so; for that, we need to know who
this user is.

Authentication
Authentication consists in verifying that whoever tries to access a specific
set of data or perform some action is who they say they are. We define users
identities within an application context through an identifier or “ID”.
An identified can be any piece of data that is uniquely related to the user.
For instance, an identifier could be the user’s name. However, this

identified is not particularly good. The problem is that one person can have
the same name as other people. What happens if we have two John Smith?
Who is which? So, we move on to define a unique identifier. Better
identifiers can be a user-defined username, an email, or a numeric ID like a
social security number.
However, we cannot validate a user’s identity only using their unique ID.
The problem is that most of the information used as identifiers is not really
private. People who know your email or username can try to impersonate
you and see all your personal data in the application. We need a secret that
is shared between the users and the application to better assess the identity
of the user.

Identification: Username and password
By defining a secret phrase or word who only the user and the application
know, we can perform authentication. The unique combination of a
username and a password becomes a way of identification by itself.

Problems with passwords
Many factors cause passwords to be not as effective as they should: In
average, people use more than one application that requires user
authentication. Ideally, people should create a unique password for each
application, but in reality, they tend to use very simplistic passwords; or
they end up using the same password for all accounts. If one of those
systems is compromised, the rest of the applications will be as well.
Passwords can be stolen, guessed, or inferred from other personal data.
People tend to use easy passwords “123456”, “qwerty”, or “password”;
users also tend to choose passwords based on easy-to-remember (but also
easy to guess) information like the dates of birth of themselves or their
direct family members. While it is human nature to try to use easy or
familiar information for our passwords, malicious users understand these
bad habits and use them against regular users.
Malicious users have automated tools that can perform brute-force attacks
trying each combination of characters possible or dictionary attacks trying
multiple combinations of words commonly used in passwords, making
guessing a password an easy process if there are not enough password
protections.

Password policies need to balance enforcing passwords that are not too hard
to remember but not too easy to guess or deduce.

Best practices for passwords
The U.S. National Institute of Standards and Technology (NIST)
describes in its “Digital Identity Guidelines” document some guidelines for
memorized secrets or passwords:

Enforce a minimum password length of 8 characters for user-chosen
passwords, or 6 character length for randomly-generated numeric
PINs.
All printing ASCII and Unicode characters as well as the space
character should be acceptable.
Authentication services may replace multiple consecutive space
characters into a single space character, to account for user typing
errors.
Random password generators should be cryptographically strong (a
list of advised generators is provided in the NIST document).
When creating new passwords, the authentication service should
compare the password with a deny-list consisting of commonly used
or compromised passwords. This list contains dictionary words, or
context-specific words like the user’s username.
No hints should be provided to unauthenticated users about the
password. This can provide helpful information to malicious users to
guess existing users’ passwords.
Limit the number of failed authentication attempts to not more than
100. This is to prevent online brute force or dictionary attacks which
aim to guess the password. The number of tries shouldn’t be small
enough that causes users to be locked out due to human error.
After reaching a specific number of failed authentication attempts,
impose a wait of 30 seconds up to an hour. This is also to discourage
online guessing attacks.
Consider the use of tools like CAPTCHA which discourage automated
access to the application.

Allow copy-paste into the password field. This encourages users to
use password managers which increase the likelihood of users creating
strong and unique passwords.
Don’t require other composition rules like requiring special characters
or numbers. Don’t enforce periodical password updates. Research has
found that these limitations do little to prevent password leaks or
guessing, while at the same time, they are a common cause of users
having bad password practices (for example, using repeated or easy to
guess passwords).
Prefer “pass phrases” consisting of multiple words separated by
spaces, over single words. They are harder to guess by brute-force
attacks and easier to remember by users.
Passwords should be encrypted in traffic (for example, while being
sent through the network) and in the rest (while being stored in a
database).
Passwords should never be stored in plain-text. A strong hashing
algorithm must be used to create a hash derived from the password.
The application then can compare the generated hash with the stored
hash to confirm the password is correct.

Notice that many of these guidelines seem to contradict common password
policies, especially the one about not enforcing special characters or other
patterns in the password. These patterns don’t have as big of a positive
impact as other factors as the password’s length or implementing multi-
factor authentication.
There are many considerations for password management. It is not easy to
enforce all these rules by ourselves, which is why most of the time we
should prefer using existing authentication providers who are specialized in
application security instead of implementing authentication by ourselves.

Identification: Multi-factor authentication
The strength of user name and password identification can be strengthened
by requiring the user to provide more information in addition to the
password. This information is usually a temporary, single-use code that is
sent to the user through a communication channel which only the user
should have access to.

A simple solution is to associate the user account with either a phone
number or an email address. The user will receive the temporary code
through an email or through a text and they will have to provide it along
with the user name and password to complete the authentication process.
This approach is effective because it requires little extra effort from the user
(for example, they don’t need to remember a second password), and phone
numbers and email addresses tend to be personal and have their own
security enforcement measures.
The idea is to create extra layers of security that don’t put an undue burden
on the users, else they will use workarounds (like having to write the
password in a piece of paper) which might compromise the security of the
whole application.

Note: Multi-factor authentication is not perfect. Malicious users have
found ways to hijack the code sent to emails or mobile phones; they
also have used social engineering attacks to fool people into providing
these secrets to them.
It’s by the combination of many imperfect security measures that we
achieve a better, layered solution.

Single Sign-On
One effective way many companies implement to reduce the number of
passwords a user needs to remember is to administrate the authentication
process to all its internal applications through a single sign-on (SSO)
service.
SSO services redirect users to an authentication form only once: when they
first try to access an application that is part of the organization. Once the
user is authenticated, a security token is shared with the rest of the
applications within the same organization, allowing the user to access them
without having to log in again.
SSO requires an extra investment in infrastructure, but it makes users’ lives
easier while allowing them to maintain secure password policies.

Authorization

Once a user is correctly authenticated, the next security step to take before
they can access restricted data is to guarantee that they have the adequate
privileges.
Most privilege-based authorization is done as a function of multiple factors:
The identity of the user attempting to access the data, the data to be
accessed and the type of action to be done on the data (read, edit, write, or
delete).
The following table displays an example of how these factors combined
define authorization levels for different users:

Table 6.1: Example of access permissions for multiple users over the same data resource

In Table 6.1, we can see an example of a resource with ID 1232, which is
owned by User 2, but other users have read privileges over that same
resource.
Directly assigning privileges to users can be challenging, as an application
can have hundreds or thousands of users. To handle these permissions in a
better way, users tend to be assigned to roles and groups which share the
same level of access over specific assets.

Roles and groups
Not all users have the same privileges over a specific data record. Typically,
a user should only see their own data; but data can also be owned by
multiple users.
Users are assigned to one or more roles or groups. Each of these roles or
groups is linked to a set of privileges. Privileges have a transitive property:
All users that are part of a user or group have the same privileges as the
group does.
For instance, we can create a role-based privilege map:

Table 6.2: Example of mapping roles to a resource type. In this case, it defines roles for a blog
application.

In Table 6.2, we show the privileges for roles in a blog application. Authors
can create,
read, and edit, but only administrators can delete. This is to allow
moderators to review and control the types of blogs that are created in the
application.
Any user assigned to a reviewers role or group will be able to read and edit
the blog post. We don’t need to give read or edit privileges to each user
individually, making it easier for administrators to make changes to
permissions, if needed.
Remember that a user can be a member of multiple roles or groups. In case
a user is assigned groups that have conflicting privileges, the user will gain
the union of all their role’s prvileges. For instance, take a user who has both
the author and reviewer roles; if they were to try to create a post, that action
would be authorized, even if that privilege is not available to reviewers.
Think of it as applying a Boolean “OR” operation on all roles: If the
privilege is approved by at least one of the roles, then it should be
authorized overall. This is not a hard rule, though, and you can choose to
have exceptions or deny lists which explicitly forbid a user or role to access
specific resources.
There is a chance that, as a backend developer, you will never have to
configure these authorization settings yourself. However, it’s important to
understand how applications typically handle privileges because you will be
in charge of enforcing validation that allows or denies access to specific
users based on their role or individual permissions.

Least privilege principle

When you’re designing the authorization for each role and user, it’s easy to
look at specific groups or people like internal employees and think “let’s
give them access to actions they don’t need right now but might need in the
future.” Even if we fully trust in their good intentions, when assigning
authorization privileges to people, the best practice is to give them the
lowest level of authorization they need to perform their work.
Think about all the movies about ultra-secret projects. All characters
involved in the project always work at a need-to-know basis, which means
each member in the project only knows the absolute minimal information
they need to work in their project; if they are compromised by the enemy or
they turn out to be double agents, the potential damage would be mitigated
by the least privilege principle..
While designing an authorization plan, give users only the privileges they
need to achieve their immediate goals.

Use case: Implementing basic authentication and
authorization for the Pizza Place
While many of the features provided by the Pizza Place are intended to be
publicly available for anyone online, some specific actions should only be
performed by authorized personal working at the Pizza Place. In this
section, we will do a step-by-step walk-through to understand how to build
application security policies that protect the internal data of the Pizza Place.

Identify user roles
As we recollected requirements for the Pizza Place application, we
recognized different types of users:

Anonymous customers: People who can access the Pizza Place
website, see the menu, and even create a one-time order.
Registered customers: People who have created a user account with
the Pizza Place who can read the menu, create orders, see their own
previous orders, and keep track of loyalty rewards, and so on.
Administrative users: People who work at the Pizza Place and can
update the menu and see the orders for all customers. Executive users:

The owners of the Pizza Place: People who can not only see all the
data in the application but also get financial reports.

The first step is to identify these users, and create an access control table: A
table containing all the user roles and the privileges each have. Table 6.3
shows an example of the access control privileges we’re defining for some
actions in the Pizza Place app:

Table 6.3: Access control table for the Pizza Place app

This table will help us verify that users assigned to a specific role can only
perform the actions they are allowed to.

Building an authentication service
As we’ve done in previous chapters, we want to find a solution for the Pizza
Place app which balances the low traffic the application will get at the
beginning and its flexibility of scaling as needed.
In the following sections, we will discuss how to build a user management
and authentication module for your application. It’s important to notice that
this approach has some downsides (which we will discuss later) and it may
work only for very simple applications like the one we’re building right
now. We will go through the process of building the authentications service
mostly as an illustrative example for us to understand how these services
typically work.

Define user management storage
Users need to be stored in a database. We can store the list of users in the
same database we will use to store all business logic like orders, menus, or
ingredients. Considering we will have just one server for out database, this
approach works well enough for this use case.

In Figure 6.1 we can see an abstract visual representation of our database
infrastructure and the contents of the Users table:

Figure 6.1: Infrastructure for a simple user management database

Keep in mind the things we mentioned in previous chapters about
concentrating all your data in one single server: Not the best practice, but
sometimes it’s good enough based on the application’s profile and budget.
Notice that Figure 6.1 shows a table definition where we store all user-
related data in the same table. This is only for the purpose of this example,
and you should feel comfortable breaking down all the user information in
as many tables as you need.

Define password-related protections
Also notice from Figure 6.1 that we always store passwords as one-way
encrypted hashes. We make emphasis on always because this is really,
really, really important, and in one-way because we don’t want passwords
to be reversed to their pre-encryption text form.
Figure 6.2 displays a typical sign-up flow where we store the hashed
version of the password in the database for the first time:

Figure 6.2: Sign-up flow: Create a new user

There are a couple of reasons why we want to store passwords as hashes
that cannot be decrypted: If a database is leaked and passwords are
compromised, attackers have no way to reverse these hashes back to the
real passwords. Even malicious actors within our own organization like a
disgruntled employee or a malicious provider, who may have authorization
to read the database, will not be able to access the real passwords.

Note: In the past, algorithms like MD5, SHA-1, and SHA-2 have been
used to produce password hashes. These have been deprecated due
the rapid advancement of computational resources and see how easy
they are to decrypt now.
The most common algorithm used for this encryption at the moment
is SHA-256, but it’s important for you to do your own research to find
out what’s the best algorithm to use at the moment to build your
application.

If we cannot decrypt the hash, how are we supposed to authenticate? If the
hashes are exposed, are they not the same as the passwords themselves
being exposed? Let’s evaluate answers for these questions.
We don’t need to decrypt the hash for the login flow. When the user submits
the login form, we can hash the authentication password. We then take this
hash and compare it with the hash that was stored in the database when the

user first signed up. Since we used the same algorithm and the same
parameters, if the plain-text password is the same, it should generate the
same hash value.
Figure 6.3 shows the flow where we compare the hash for the incoming
password with the hash already stored in the table:

Figure 6.3: Login flow: Compare the hashes

Now, if the hash is compromised, in order for a malicious actor to use it to
impersonate the owner of the hash’s password, the malicious user would
have to bypass the hashing function in the login module. Otherwise, the
hashed string would be hashed again, resulting in a third hash value and
causing the authentication to fail. For most cases, it’s practically impossible
to bypass just the encryption function, so having a hash is not the same as
having the plain-text version of the password.
The following Java class shows you how to create a SHA-256 hash from a
string, and run some simple tests to assert that the same hashes are
generated by using the same passwords:

1. import java.security.MessageDigest;
2. import java.nio.charset.StandardCharsets;
3. import java.security.NoSuchAlgorithmException;

4.
5. public class Main {
6. private static String bytesToHex(byte[] hash) {
7. StringBuilder hexString = new StringBuilder(2 *

hash.length);

8. for (int i = 0; i < hash.length; i++) {
9. String hex = Integer.toHexString(0xff & hash[i]);

10. if (hex.length() == 1) {
11. hexString.append(‘0’);
12. }
13. hexString.append(hex);
14. }
15. return hexString.toString();
16. }
17.
18. private static String hashPassword(String password)

throws NoSuchAlgorithmException {

19. MessageDigest digest = MessageDigest.getInstance(“SHA-
256”);

20. byte[] salt = “this is a salt string”.getBytes();
21. digest.update(salt);
22. digest.update(password.getBytes(StandardCharsets.UTF_8)

);

23.
24. byte[] encodedhash = digest.digest();
25.
26. return bytesToHex(encodedhash);
27. }
28.
29. public static void main(String[] args) throws

NoSuchAlgorithmException {

30. String realHash = hashPassword(“Hello world!”);
31.
32. boolean isEqual١ = realHash.equals(hashPassword(“Hello

world!”));

33. boolean isEqual٢ = realHash.
 equals(hashPassword(“Wrong Password!!”));

34.
35. System.out.

 println(“Using the right password. Success? “ +

isEqual١);

36. System.out.
 println(“Using the wrong password. Success? “ +

isEqual٢);

37. }
38. }

The actual encryption happens in the following snippet:

40. MessageDigest digest = MessageDigest.getInstance(“SHA-
256”);

41.
42. byte[] salt = “this is a salt string”.getBytes();
43. digest.update(salt);
44. digest.update(password.getBytes(StandardCharsets.UTF_8)

);

45.
46. byte[] encodedhash = digest.digest();

First, we get an instance of the SHA-256 encryption function. We call the
function digest.update(byte []) twice to pass two arrays of bytes which
will be encrypted:

The salt: This is an arbitrary string that adds strength to the
encryption. The salt’s bytes are mixed with the bytes from the plain-
text password. The combination of password and salt creates the hash,

and the hash cannot be reproduced without having both. Think of the
salt as a secret owned only by the application, just as the plain-text
password is a secret owned only by the user.
The plain-text password.

Since digest.digest() returns an array of bytes, we use the bytesToHex
function to convert it to a string containing hexadecimal characters.
The main function goes ahead and makes it clear that hashing the same
string with the same algorithm and salt will result in the same hash.

Note: Password recovery
One downside of not being able to decrypt a password is that we
cannot provide real users with their own passwords if they forget
them. The best we can do is reset the password by replacing the
existing hash with one generated from a new plain-text password, and
give the new password to the user so they can log in and update the
password again themselves.

Build web forms for signup and login
A large area of authentication’s implementation happens in the front-end, so
it’s necessary to build web forms that will allow the users to submit their
username and password to the application. The front-end should also
enforce redirecting unauthenticated users to login routes (or any other
public route) when they try to access restricted pages. Specifics on building
these forms are out of the scope of this book.
As backend developers, we would need to implement HTTP sessions where
we store all the information related to a successful authentication.
Remember that HTTP is stateless, so a session token needs to be passed in
every request to identify an authenticated user.
A session data record is created for the user when the user logs in
successfully. The session data is stored under a session ID. The session ID
can be stored in memory or in a database. A cookie or token with the
session ID is created for that request.

Figure 6.4: Session ID creation flow on log-in

In Figure 6.4, notice that we use the term JSESSIONID as the
session’s ID cookie name. This is a name commonly used in Java’s
HTTP session cookies. Other common cookie names for session
tokens are PHPSESSID for PHP or connect.sid for Express. However,
all servers allow you to configure this cookie’s name.

After the client receives the response for a successful authentication, they
are in charge of passing the session cookie that contains the session ID in
every request. If the cookie is missing from the request, the server will treat
it as a non-authenticated request. However, most browsers or web viewers
will take care of remembering and passing all set cookies back and forth.
Figure 6.5 displays a visual example of this process:

Figure 6.5: Session ID creation flow on log-in

Note search term: HTTP cookies
Cookies are small pieces of data which are passed back and forth
between a client’s browser and the server. Cookies are commonly used

to store information that needs to be sent in each request, like session
cookies, authorization tokens, or user preferences like language.
Some servers choose to store the user’s data directly in the cookie
while others prefer to store the user’s data in a database and only use
the cookie to store the session ID to retrieve the record. There are
multiple trade-offs to these approaches, but most of the time it’s
harder to store all the session data in the cookie, as it involves
cryptographically signing it to make sure a malicious user hasn’t
tampered with it, and limiting the amount of data it can store, in
order to not slow down traffic by adding too much information in
each request.

Storing information in a user’s session is straightforward in most backend
libraries. For instance, we can access a user session in Java servlet-based
servers as shown in the following code snippet:

1. import javax.servlet.http.HttpServletRequest;
2. import javax.servlet.http.HttpServletResponse;
3.
4. // **
5.
6. public void doGet(HttpServletRequest request,

HttpServletResponse response){

7. // …
8.
9. String uname=request.getParameter(“userName”);

10.
11. HttpSession session=request.getSession();
12. session.setAttribute(“uname”, uname);
13. }

We can do the same using Node’s Express library express-session, as
shown in the following code snippet:

1. app.get(‘/’,(req,res) => {

2. session=req.session;
3. if(session.userid){
4. res.send(“Welcome! The user is logged in”);
5. }else
6. res.sendFile(‘views/index.html’,{root:__dirname})
7. });

In these examples, the session storage works as a key-value store, allowing
us to set and read simple string values.

Apply authorization controls
Regardless of how it will be stored, the user session data can contain as
much information as needed to identify the user: Username, email, name,
link to a profile picture, and so. Among this session data, authorization-
specific data should be included.

Translate a high-level authorization map to implementation
details
Until now all the privileges we defined were high-level descriptions of
ACTION+RESOURCE like create order or update menu. We need to
translate these abstract privileges into actual implementation details.
We can map privileges into specific things like URLs or routes and
functions.
The mapping of privileges to URLs or routes happens in the front-end of
the application. For instance, only users who have the role of an admin or a
manager should be able to access /update-menu.html or its equivalent
route in a mobile app.
If the front-end has a web server proxying all requests, only authorized
users should be able to successfully make requests to them. An example of
this can be seen in Figure 6.6, in which clients who want to update a menu
can send a POST /update-menu.html request through an HTML form
instead of sending a PATCH /api/menu/123321 directly to the API.
Requests coming from users with unauthorized roles should be denied, as
shown in Figure 6.6:

Figure 6.6: Authorization at the URL level

Some servers provide configurations that administrators can update to
enforce this kind of mapping. For instance, using Java web applications, we
can create the following sever configuration to define resources, their
URLs, HTTP methods, and the roles that can access them:

1. <security-constraint>
2. <web-resource-collection>
3. <web-resource-name>Protected Area</web-resource-

name>

4. <url-pattern>/jsp/update-menu.html</url-pattern>
5. <http-method>PUT</http-method>
6. <http-method>DELETE</http-method>
7. <http-method>GET</http-method>
8. <http-method>POST</http-method>
9. </web-resource-collection>

10. <auth-constraint>
11. <role-name>admin</role-name>
12. </auth-constraint>
13. </security-constraint>
14.
15. <security-role>
16. <role-name>customer</role-name>
17. </security-role>

18. <security-role>
19. <role-name>admin</role-name>
20. </security-role>

Configurations like these allow us to configure access control for both
URLs and for individual HTTP methods: We can allow all users to do GET
requests to most pages, but no DELETE, POST, or PATCH unless they have the
right role and privileges.
However, not all access control checks map directly to a URL or route. If
the authorization logic is more complex and requires you to check multiple
things beyond roles (for example, actions that the user would have to
complete before accessing a feature, like validating their emails), we can
always do manual authorization checks in the code. The following code
shows how you can manually authorize a function call for Python’s web
framework Django:

1. from django.core.exceptions import PermissionDenied
2.
3. def updateMenu(request, pk):
4. if not user.has_perm(‘pizzaplace.change_menu’):
5. raise PermissionDenied
6. #…

Access control can also be done at the API level, as shown in Figure 6.7.
While it’s still a good practice to validate access at the front-end level, most
API endpoints should perform their own access control checks.

Figure 6.7: Authorization at the URL level

We will discuss authorization to API resources more in depth later in this
chapter.
In general, each application module or server should treat all incoming
requests as possibly unauthorized, even if they are supposed to be coming
from a trusted resource like the front-end web server.

Using scopes to check authorization
In addition to the permissions given to a user by their role, we can give that
user permissions over specific resources. For instance, a manager user
might want some admin users to be able to access the financial report for a
meeting. In that case, we wouldn’t want to upgrade admin users to manager,
as the role might include other privileges we don’t want to give them.
In this case, we can assign scopes or permissions directly to a user:

1. {
2. “country”: “United States”,
3. “timezone”: “America/Chicago”,
4. “roles”: [
5. “admin”
6.],
7. //…
8. “permissions”: [
9. “read:finantial_report”,

10. // …
11.]
12. }

You can configure your authorization as you need to, but commonly these
one-off permissions override whichever permission the user has based on
their roles.

Test access control
Once you have configured authorization and authentication, all that’s left is
to use your access control table to define tests to ensure each role only has

access to the resources they are allowed for, and that the application handles
correctly the denial of access to unauthorized and unauthenticated users.
These tests can be unit tests trying to execute specific functions, or
integration tests calling API endpoints; both manual and automated, as
described in Chapter 5, Automated Application Testing.

Federated authorization
The authorization and authentication flow we just discussed is good enough
for small, non-critical systems. It has some weaknesses, though:

Good user, role, and privilege management is difficult to get right.
Malicious users are constantly finding ways to bypass security
measures and encryption algorithms. If you’re implementing your own
authorization and authentication administration services, you need to
understand the latest trends in app sec and update your application
accordingly.
In the service described in the example, user management is tightly
coupled with the application. There are multiple problems with this:

If you want your application to integrate with a third-party app,
you have to provide them access to your user’s database so they
can access the session tokens and user information. This assumes
you trust those applications enough to read all your data.
You can try to build an API for external apps to consume your
user’s information, but that would be just a juicy goal for
malicious users. A lot of effort would have to be put into building
and securing your security-sharing services.
If you don’t want to share your data, you then need to send all
user-management related data to the other applications who want
to integrate with you. This approach is complex, as it requires
you to sync any changes to the user management data across all
applications using it.

Now, think of the case where you are building API services but multiple
external companies want to integrate with your API as discussed in Chapter
3, Designing APIs. Who will own the user information? Will you trust them

to access your database directly? Who will be the source-of-truth when
conflicts happen?
A user management approach like the one we’ve been discussing in
previous sections is not scalable. It really only works well if your
application does not integrate with external APIs/applications or if your
application does not need to scale horizontally.
We talked about Single Sign-On (SSO) which is a solution to the problem
of giving access to multiple applications to the same user. SSO is a subtype
of federated authentication.
In federated authentication, you use an independent user management
service or identity provider (IP) to authenticate your users for you. The IP
takes care of storing users and their data. Once the IP validates a user is
who they say they are, it will give them a token which the users will use to
let your application know that they are indeed authenticated.

Figure 6.8: Authentication flow when integrating with an external provider

Figure 6.8 displays a high-level view of a user authentication for an
application using authentication federation.
This architecture assumes there is an IP collectively trusted by you and all
the applications you will integrate with.
You have multiple options when choosing an IP:

You can build your own IP. Not really advised unless you’re a large
company or planning on providing IP services yourself. It requires too
much work.
Install an off-the-shelf solution like WSO2 Identity Server or
Keycloak. You can buy a license for those products and install them in
your private network.
Use public cloud-based services. Federated authentication is one of the
main services of specialized companies like Okta or Auth0; but large
companies like Facebook, LinkedIn, or Google offer their own IP
services to which you can integrate to.

Pros and cons of federated authentication
The multiple advantages of using federated authentication are:

It can integrate seamlessly with internal and external applications. As
long as all involved applications trust the identity provider (IP).
Better separation of concerns. The developers working on the IP can
concentrate in building all the latest features in app sec, as well as
complying with regulations like HIPAA and GDPR.
The IP service can evolve and grow independently of all the
applications consuming it. It will only consume the resources it
actually needs, instead of sharing them with an application.

On the other side, some of the downsides are:

It increases complexity in the application. This is true for any
implementation that requires the application to be distributed among
different servers.
Extra measures are required to confirm all authentications and
authorization data is correct and trustful. These measures usually mean
extra communication steps between the application and the IP as well
as the use of cryptologic keys to make sure all tokens are correct and
un-tampered.

Since federated authentication involves the integration and communication
of multiple applications and services, using well-defined protocols and
standards is important. The most commonly used are SAML and OpenID.

Security Assertion Markup Language (SAML)
Created in 2001 by the OASIS Security Services Technical Committee
(SSTC), this open standard describes a process to exchange authorization
and authentication information between multiple services, like between an
IP and applications consuming it.
In Figure 6.9 we find the typical SAML flow, and the interactions between
the involved actors: the service provider, the user agent, and the identity
provider. Please take a look at the following figure:

Figure 6.9: SAML authentication flow

Image provided by Wikipedia (license is linked in the references section)

SAML relies on XML documents that are digitally signed by both the
application and the IP. This sign is then checked by both parties to verify its
authenticity. The XML document includes assertions, which are just
attributes related to the user like name, email, phone number, roles, and
privileges.

SAML was the first attempt to standardize federated authentication, and it
is widely used to authenticate users among multiple enterprise applications.
Thanks to its maturity, it supports features like communicating through
proxies. These features are not as well supported by other standards like
OpenID.

OpenID
It’s difficult to talk about OpenID without talking about OAuth2 first. These
two specifications are so coupled to each other that they are constantly
confused and used interchangeably.

OAuth2
OAuth2 is an authorization protocol. It’s based on the idea of authorization
delegation: An external service which validates the user’s privileges to
access a specific resource. In the context of OAuth2, these protected
resources are commonly actions exposed by an API. The OAuth2 flow
generates tokens in behalf of users that the applications send along the
requests to the API to gain access to its protected resources.
For instance, imagine you’re building an app that monitors a user’s progress
in a game and then tweets updates to their followers. This app will be used
by “speedrunners”: people who complete video games as fast as they can,
sometimes breaking records. They need to concentrate on the game they are
playing, but they also need to engage with their followers. To enable
engagement of the gamers with their followers, we will use Twitter’s API to
perform actions in the social network in behalf of our users, all from our
app.
In one use case, the speedrunner user opens your application and clicks on a
button with the label “Connect with Twitter”. Since it’s the first time the
user opens the application, we initiate OAuth2’s flow to get an access
token.
Once we have the token (or if we already had one), we can attach it to the
request to Twitter’s API. Twitter’s server then checks it to verify that the
application’s request done on behalf of the user is authorized. If the access
token is correct and the user has the right privileges, the API will execute
the action (post to the user’s timeline) and return the expected result.

Terms
Let’s make sure we use the same terms when discussing OAuth2’s flow.

Resource owner: This is the user who owns the data.
Client: This is another term to identify the application which wants to
access data on behalf of the resource owner. While this term is used by
OAuth2, this chapter will still refer to the client as an “application” to
avoid confusing it with the resource owner.
Authorization server: This is the external service which provides the
authorization code and access tokens. It also has enough information
about the user and the application to let the application know if the
user has the right permissions or not.
Resource server: This is the API which the client or application will
try to access on behalf of the resource owner.
Scope: This is the level of permissions to be done with the data.

Request an authorization code
The ultimate goal of the OAuth2 flow is to get an access token. But, before
we can get one, we need to perform a few steps:
First, we request an authorization code by redirecting the user to the
authorization server, which for this example is Twitter’s authorization
server.
The authorization server -Twitter- will let the user know what information
is being requested (for example, name, email, phone number, profile
information, list of tweets, contacts, among others), and the list of actions
that the application wants to perform on the user’s behalf (post tweets, read
the user’s timeline, and so on).
These are scopes, or as we have named them earlier, privileges. The user
has to consent and approve the list of information the application is trying
to access. Figure 6.10 shows the screen in which Twitter’s Authorization
server requests the user’s approval for authorizing the listed scopes for the
application:

Figure 6.10: The authorization server will let the user know exactly what is (and what isn’t)

approved for the application to do and request in their behalf

Before being able to provide the application with an authorization code, the
authorization server will ask the user to log in to verify they are the owners
of the account for which the application is requesting access. Figure 6.11
shows Twitter’s authentication page which is displayed right after accepting
the scopes:

Figure 6.11: User needs to authenticate with

Twitter before allowing the application to request the user’s

information

Once the user approves the scopes and gets authenticated with the
authorization server, the user’s browser will be redirected back to the
application, along with a brand new, one-use, authorization code.

Request an access token
Since all exchange until now has been public through redirects in the
browser, we risk our authorization code being intercepted or exposed to
malicious users.
To mitigate this risk, we need to do one last step: Exchange the
authorization code for an access token through a private channel. In the
server’s back end, the application sends the authorization token along with a
client ID and a client secret to the authorization server to get the access
token. The authorization server will verify that the code is not tampered
using a cryptographic signature. If the code and all the other client

information are correct, the authorization server will respond with the
access token.
Now the OAuth2 flow is complete and the application can send the access
token with each request to Twitter’s API to prove it has access to the API
resource; at least until the token expires and we need to request for a new
one. Fortunately, we can skip the log-in and user consent steps when
refreshing the token, making the process transparent to the user.
The OAuth2 flow we just described is called a code flow. To put it all
together, we can see each step in Figure 6.12:

Figure 6.12: OAuth2’s “code” flow

The implicit flow
OAuth2 has other flows, to accommodate different application
architectures. Another common flow is the implicit flow, which is used by
applications that might not have a private channel to exchange the
authorization code for an access token.
The implicit flow is almost identical to the code flow, except that it requests
the access token directly, instead of requesting the authorization code first
to later exchange it for the access token. Right after the first redirect, the
application is ready to make authorized requests to the API.

The most common example of applications that use the implicit flow is
static web applications: Front-end applications which are rendered directly
from HTML, JavaScript, and CSS files.
Static web applications have no server-side at all: All actions are performed
directly in the browser using JavaScript. Modern front-end applications
built with frameworks like React or Angular often follow this pattern.
This flow trades-off some amount of security for a simpler flow to support
these applications which cannot perform a full code flow. Figure 6.13
shows the steps in the implicit flow so we can contrast it with the code
flow:

Figure 6.13: OAuth2’s “implicit” flow

Building OpenID from OAuth2
OAuth2 is not an authentication protocol. For a long time -before the
introduction of OpenID, OAuth2 was “abused” by many companies to
perform federated authentication.
Developers started to assume that if a request is authorized to access a
resource or an action, then it was safe to say that the user making the
request had to be authenticated. Authentication, which was just a step in the
authorization process, suddenly became the goal itself.

The problem was that each company started to patch they own
authentication flows on top of OAuth2 as they saw fit. For instance,
Facebook created Facebook Connect, which allowed developers to include
authentication through Facebook in their applications.
Since each Identity Provider (IP) started building their own authentication
processes on top of OAuth2, multiple complications arose: Not all providers
implemented the same features. If you chose one specific provider, you
would end up coupling to it, as migrating to a different provider required
code and dependency changes to adapt to their own protocols. Privacy and
centralization concerns grew. Developers had to comply with the processes
defined unilaterally by the provider they integrated with.
This hole in the OAuth2 specification led to the creation of OpenID.
OpenID filled the blanks, thus providing a specific way for providers to
implement federated authentication while still supporting OAuth2 flows.
OpenID performs the same flows as OAuth2, but it requests an extra scope:
“openid”. This scope allows the authentication server to consider this as an
OpenID flow and include information about the user’s profile in the
authorization token.
This simple addition guarantees that the same client can integrate with
multiple identity providers, as they all have to follow OpenID
implementation rules.

Building security into the application’s design
Application security is a horizontal concern in software development. This
means that each element of the software development process has at least
some level of involvement in the effort of keeping your application secure.
As any horizontal concern, application security needs to be defined before
the application is written. Trying to “add” security to the application after it
was designed and built will end up in a vulnerable system or in broken
functionality.
Some business-level use cases will be affected directly by application
security concerns. Critical actions like bank transactions typically require
users to re-authenticate to improve trust behind each operation; some
application owners might not like the added complexity, so these changes in
business logic need to be considered from the beginning.

Before we even start building the application, we need to evaluate the
security risks our application may face once it’s in production. For that, we
use Threat Modeling.

Creating a Threat Model
Threat Modeling is a process through which we identify potential security
treats and vulnerabilities in a way we can estimate their criticality so that
we can plan and prioritize fixes.
This process is usually performed by an application security expert, as it
requires some level of experience in order to correctly assess the severity of
some of the risks. However, in this section, we will describe the overall
steps involved in the threat model so you can get involved in the design of
secure applications.
The main steps to perform to create a threat model are as follows:

Decompose the Application
Determine and Rank Threats
Determine Countermeasures and Mitigation

Each part of the process should be correctly documented so the whole team
understands the threats which can be identified today; in that way, the
Thread Model can be updated as new features are built.

Decompose the application
The first part is to fully understand how the application works and the
modules it is composed of. As a backend developer, you might have only a
limited view of the application, so it’s important to involve other team
members which have experience in other areas like front-end, database
management, and so on.
In this step, we try to identify:

Entry points which can be used by malicious users to access -and
potentially attack the application.
Assets which may be of interest for malicious users such as databases,
logs containing sensitive information, and so on.

List the possible vulnerabilities which are common for the type of
application we’re building (for example, web, mobile, or desktop
applications).
The access privileges for roles and actors.

Determine and rank threats
In this step, we review the information we put together in the previous step
and try to find possible vulnerabilities which our application can be a victim
of. We can use a model like STRIDE, which is a model defined by
Microsoft to categorize vulnerabilities.
STRIDE categorizes vulnerabilities in:

Spoofing identity: Illegally impersonate another user. Tampering with
data. Any action which negatively impacts the integrity of data at any
point in the application.
Repudiation: Repudiation is the capability of malicious users to deny
and hide their malicious actions. These vulnerabilities happen when
there are no records which can prove a user performed a malicious
action.
Information disclosure: Violations to the confidentiality levels of
data within the application.
Denial of service: Violations to the availability of data within the
application.
Elevation of privilege: Cases where unprivileged users gain access to
parts or data of the application which they shouldn’t have access to,
like admin features.

Not all threats are the same, though. Some can be exploited more easily
than others, and some might have a deeper impact than others, depending
on the specifics of the application implementation; for this reason, we need
to define a way to rank threats. A common model to assess risks is
DREAD:

Damage: How bad would an attack be?
Reproducibility: How easy is it to reproduce the attack?
Exploitability: How much work is it to launch the attack?

Affected users: How many people will be impacted?
Discoverability: How easy is it to discover the threat?

Each category is given a rating from 1 to 10. Each category should be given
a weight to better match with the priorities of the application. An overall
score is then calculated by adding the individual scores or by doing a
weighted average. This score will guide us in prioritizing which
vulnerabilities need to be fixed first.
Remember that some vulnerabilities may not be exploitable in the current
implementation but that situation can change as the application evolves.
That is why it’s important to include these vulnerabilities in the Threat
Model but having a low exploitability score.

Determine countermeasures and mitigation
Design a plan to deal with the possible vulnerabilities, taking into
consideration their prioritization scores. Most of the time, this plan consists
in three actions:

Fix those vulnerabilities that can be fixed.
Mitigate vulnerabilities that cannot be fixed.
Accept vulnerabilities that cannot be mitigated, or remove the features
which contain them if they cannot be accepted.

We can see that the Threat Modeling process will end in very concise action
items and documented decisions. This is great because this outcome will
help us build a more robust application and to react correctly in case of
attacks.

OWASP Top 10: The most common vulnerabilities
The best way to know how to protect your application is to understand how
malicious users can attack it. This is the root rationale behind testing
activities like penetration testing: Look at the application from the point of
view of a malicious user.
You will find it difficult to keep track of all the possible attacks and
vulnerabilities, especially if you’re not an application security expert. This

is why we focus in the most common vulnerabilities, which will render
better results than trying to cover all or none of them.
The Open Web Application Security Project (OWASP) is a foundation
that researches application security and provides tools and guidance on how
to secure applications. They document common vulnerabilities and every
year they post a list of the top 10 most common vulnerabilities.
As a backend developer, make a habit out of reading this list at least once a
year. It will give you insights into how hackers attack applications and how
some applications fail to defend themselves.
The OWASP Top 10 for 2021 is:
Broken Access Control: OWASP: “Access control enforces policy such
that users cannot act outside of their intended permissions. Failures
typically lead to unauthorized information disclosure, modification, or
destruction of all data or performing a business function outside the user’s
limits.”
Cryptographic failures: These vulnerabilities cover failures related to
cryptography which often leads to sensitive data exposure or system
compromise.
Injection: Injection vulnerabilities are those where, due lack of correct
validation or sanitization of data incoming into the application, malicious
users are able to pass parameters or execute code remotely to retrieve
sensitive information or gain privileged access to parts of the application.
Insecure design: These vulnerabilities involve “missing or incorrect
control design”, which is the lack of consideration of application security
features, constrains, and analysis like threat modeling while designing the
application.
Security misconfiguration: Applications and servers which rely on
configuration files to retrieve settings during runtime are vulnerable when
those configurations contain factory settings like known or default
passwords and keys, or excessively permissive configurations in things like
firewalls, open ports, and other network configurations.
Vulnerable and outdated components: During the lifetime of most code
libraries and dependencies, users and developers find vulnerabilities which
then are fixed in future versions. When applications don’t update these

components in time, they open themselves to those well-known
vulnerabilities.
Identification and authentication failures: Several vulnerabilities exist
which cause the incorrect use and implementation of the authentication and
authorization flows we discussed in this chapter. Other situations which
compromise authentication are those where we expose sensitive data like
access tokens or client secrets.
Software and data integrity failures: These are vulnerabilities which fail
to guarantee the integrity of the application and the data that is used by it.
Security logging and monitoring failures: One critical aspect of
application security is the system’s capability of detecting and monitoring
intrusions and attacks. Without an adequate logging and monitoring
implementation, attacks can be led successfully without us having the
chance to try to stop or mitigate them, or at least recover from them.
Server-side request forgery: This specific vulnerability exists when a web
application is fetching a remote resource without validating the user-
supplied URL. This lack of validation can lead to the server making
requests to malicious resources through an insecure channel.
The OWASP website includes more complete descriptions of these
categories, as well as some examples of the most common vulnerabilities.
Feel free to jump in and get a better idea of how hackers take advantage of
poorly implemented applications. Then, use this knowledge to build better
software.

Conclusion
Securing an application is a large effort. It requires us to guarantee that data
will always retain its confidentiality, integrity, and availability qualities.
Data should be reliable and our application should create enough
validations and constraints to guarantee that it remains like that. We
understand that having losses in confidentiality, integrity, and availability
has negative consequences both economically and in reputation for
ourselves and our users.
In this chapter, we discussed how we protect applications through
authentication and authorization. We verify our user’s identities and the

privileges they have over actions and data so that we can keep protecting
the concerns described by the CIA triad.
We went through the most critical concepts in securing an application, as
well as why we want to incorporate authentication and authorization
checks.
We defined the most up-to-date best practices for password policies, which
provide a revised approach to what rules we should enforce among our
users.
We discussed how authentication works, why it’s important to never store
or transmit passwords in plain text, and how to implement a basic
authentication flow. We then discussed how to define a model of privileges
and roles to authorize (or not) users to perform specific actions or access
specific data.
We then analyzed how to better scale authorization and authentication
through federation: Authentication federation using standards like SAML
or OpenID, and authorization delegation using OAuth2. We discussed how
OAuth2 flows work, and the reason behind every one of its steps.
And at the end, we took a step back into how to consider possible
vulnerabilities in our application to design Threat Models, remediation, and
mitigation plans. We also saw some of the most common vulnerabilities for
software applications, which gave us an insight into the minds of malicious
users; all so we can better protect the data our users put into our
applications.
Since we are in the mood of discussing remediation of negative situations,
in the next chapter we will talk about application errors in general and ways
to track, fix, and mitigate them.

Questions
Pick two different apps you use on a semi-daily basis. Then, for each of
those applications, answer the following questions: What part or parts of the
application do you think malicious users target the most? How do you think
they try to “hack” these applications? Is there a part of the application
which might be especially vulnerable?

Just remember: Performing malicious activities in an application without
previous approval of the application owner is prohibited and it can get you
into legal problems, regardless of your intentions. If you find vulnerability
in a well-known application, report it. Some companies offer rewards to
users who follow the right reporting process.
If you feel like you want to explore the field of penetration testing for
defensive purposes only in a legal and safe way, there are resources out
there like hackthebox.com, which offer “hacking challenges” for you to
practice.

Resources
Study about the impact of data breaches:
https://www.verizon.com/business/resources/reports/dbir/
NIST Digital Identity Guidelines: https://pages.nist.gov/800-63-
3/sp800-63b.html
National Cyber Security Centre’s Password administration for system
owners: https://www.ncsc.gov.uk/collection/passwords/updating-
your-approach
URL access control in Java web applications:
https://docs.oracle.com/cd/E19226-01/820-7627/bncav/index.html
Python’s Django: https://www.djangoproject.com/
WSO2 Identity Server IP: https://wso2.com/identity-server/
Okta IP: https://www.okta.com/
Auth0 IP: https://auth0.com/
SAML flow Wikipedia image license:
https://en.wikipedia.org/wiki/File:Saml2-browser-sso-redirect-
post.png
Threat Modeling process: https://owasp.org/www-
community/Threat_Modeling_Process
SAML specification: http://docs.oasis-
open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
OAuth2 documentation: https://oauth.net/2/

https://www.verizon.com/business/resources/reports/dbir/
https://pages.nist.gov/800-63-3/sp800-63b.html
https://www.ncsc.gov.uk/collection/passwords/updating-your-approach
https://docs.oracle.com/cd/E19226-01/820-7627/bncav/index.html
https://www.djangoproject.com/
https://wso2.com/identity-server/
https://www.okta.com/
https://auth0.com/
https://en.wikipedia.org/wiki/File:Saml2-browser-sso-redirect-post.png
https://owasp.org/www-community/Threat_Modeling_Process
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
https://oauth.net/2/

STRIDE model: https://docs.microsoft.com/en-us/previous-
versions/commerce-server/ee823878(v=cs.20)

E

CHAPTER 7
Handling Errors

ven the most advanced application systems are prone to errors. How are
these errors introduced into software applications? How can we deal

with them? This chapter describes common causes of errors and patterns to
help developers find and fix them. We will discuss how logging allows us to
inspect errors after they happen.

Structure
In this chapter, we will learn the following topics:

Why do we need to handle errors?
Types of error handling
Implementing good exception handling
Finding production errors with logging
Handling errors in distributed systems
Use Case: Logging errors with the ELK stack
A/B testing and gradual deployment

Objectives
In this chapter, we will discuss good practices for preventing and dealing
with errors within our application. For this, by the end of the chapter, the
reader will understand how to programmatically handle errors by
implementing effective exception handling.
We will learn how to find and track errors in production environments using
logging and to centralize log entries for entire distributed systems. Logging
errors allow developers to find, track and fix bugs.
Finally, we will understand how to mitigate the impact of errors introduced
by new features to production environments.

Why do we need to handle errors?
In the context of software applications, errors are any undesired or
unexpected conditions in the application or its data. Any state or situation
that goes against our application’s expectations can be considered an error.
This definition of an error is essential because many errors are context-
specific, which in plain language means that an error for one application
might not be considered an error for another.
For instance, having a user delete their profile may be an allowed action in
many applications. However, other applications might require an
administrator to remove the data in the user’s behavior. If a user could
delete their profile in this second situation, that would be considered an
error.
Thankfully, most errors are less ambiguous or context-dependent; and more
specific to certain actions or scenarios within the application.

Understanding common causes of errors
A large majority of actions can end up in an error state; and depending on
how we can handle them, we can categorize errors into the following two
types:

Recoverable errors: When the application can do something to fix
the error and return to a normal state.
Non-recoverable errors: When the application cannot handle the
error state possibly because the error is too critical or there is no good
alternative path and an external actor (for example, a human
administrator or a monitoring system) needs to act to recover the
system.

An example of a recoverable error is when the application receives the
wrong input from the user (for example, the user passes a negative integer
for an operation that only accepts positive values). In that case, the
application can return an error message to the user asking them to retry their
action with the correct parameters.
On the other side, an example of a non-recoverable error is the case where
the application’s server runs out of memory and the application crashes. In

that case, there is nothing the application can do to recover and requires
someone else external to it to perform remediation actions like killing other
processes to free memory, restarting the application, restarting the whole
server, or spinning a new instance of the server altogether. Whether an error
is recoverable or not depends on the error itself and the context in which it
exists.
Other common causes of errors are as follows:

A network connection fails.
A file cannot be opened.
A user tries to access a resource to which they do not have access.
The user inputs incorrect data.
The application’s developer introduces a mistake in the code.

Any action that may have a probability of not completing successfully
within the accepted parameters can be seen as a possible cause of errors.
It is our responsibility as software developers to inspect our code for
possible sources of errors and then implement measures to preemptively
deal with these errors as follows:

If the error is recoverable, log and recover.
If the error is not recoverable, log, report, and, if possible, apply
mitigation actions such as creating a new instance of the application or
dumping all data from the memory into the disk to reduce the negative
impact the error will have on the user.

We will discuss logging later in this chapter. For now, let us focus on how
software applications represent and handle these error states.

Types of error handling
As we will see, each coding language has its own way of dealing with
errors. However, most of them can be categorized in specific patterns of
error handling Let us talk about the most common strategies to deal with
errors and see their pros and cons.

Exceptions

In coding languages like Java, C#, JavaScript, or Python, errors are
categorized as exceptions. Exceptions are special conditions or states that
can happen in an application at runtime. These events cause the normal
flow of the application to diverge, and unless developers implement specific
code logic to handle them, exceptions can potentially terminate the
application’s execution.

Using stack traces to debug problems
All exceptions have a stack trace: A text description of where the
exception was thrown. The stack trace is a description of the application
execution context at the moment the exception was created. The following
is an example of what a stack trace looks like in Java:

1. Exception in thread «main” java.lang.NullPointerException
2. at com.example.Item.getIngredients(Item.java:16)
3. at com.example.Order.getItems(Order.java:25)
4. at

com.example.PizzaPlaceApp.main(PizzaPlaceApp.java:14)

As we know, when functions are executed, their context is put in a stack; if
the getItems function calls the getIngredients function, the context of
getIngredients will be inserted in the execution stack on top of the context
of getItems. As the execution reaches more nested functions, the context for
these functions will be added to the top of the stack.
To help us diagnose the situation when the application throws an exception,
the whole execution stack is converted into its string representation and
included as an attribute in the exception object.
Stack traces offer developers a step-by-step path the application took that
led to that error. Using this information, we can put breakpoints in the
functions listed in the stack trace during development to diagnose the cause
of the error.

Defining exception types
In object-oriented languages like Java, all exceptions extend from base
classes like java.lang.Exception or java.lang.Error. More specific
errors like FileNotFoundException, an exception that the application

raises when it tries to access a file that does not exist, extend these generic
error classes.

Note: In Java, java.lang.Throwable is the base super-class from which
both java.lang.Exception and java.lang.Error extend.
In that context, all classes that are derived from java.lang.Exception
are supposed to represent recoverable errors, while classes that are
derived from java.lang.Error classes represent serious, non-
recoverable errors.

This subclassing of exceptions allows us to write code to handle different
types of errors individually. However, this class hierarchy also leads to the
not-so-great practice of developers always using java.lang.Exception to
handle all types of errors. Always catching instances of the Exception class
“works”, but specific exception types provide a richer and easier to debug
explanation of errors when these happen. It is easier to find out what
happened when we handle a specific exception like
FileNotFoundException than java.lang.Exception.

Catching exceptions
Languages that support exceptions also have a way to indicate to the
application how to deal with them through try-catch blocks:

1. try {
2. // regular code execution
3. } catch(Exception exception) {
4. // code to deal with exception
5. }

Every exception that is thrown or raised within the try { … } block will
stop the regular application’s execution and will continue in the catch() {
… } block with the right type of exception, where the application is
supposed to recover.
For instance, think of the case where the application tries to access a file
that does not exist in the filesystem. If we want the application to handle
this error case, a code like the following can be used:

1. try {
2. BufferedReader rd = new BufferedReader(
3. new FileReader(
4. new File(fileName)));
5. String line = rd.readLine();
6. // keep reading the file
7.
8. } catch(FileNotFoundException fileException) {
9. // insert code here to deal with the exception

10. }

In this preceding code snippet, if any line within the try block raises a
FileNotFoundException, the execution will jump to that catch block where
we can log and recover from that special case. If the code inside the catch
block does not throw an exception itself, the application will continue as if
no errors were ever found.
Also notice that, since we only have one catch block for
FileNotFoundException, any other exceptions that don’t extend this class
will not be caught.

Errors validated at compile time
Modern compilers are excellent at static code analysis: Parse the code and
search for patterns that can lead to common errors: From syntax errors to
possible memory leaks.
Some functions have very explicit failure cases. For instance, when opening
a file, there is always a chance of the file not existing or being corrupted.
We can take advantage of the compiler’s static code analysis to enforce
developers to handle errors at compile time. That is the case of checked
exceptions.
Checked exceptions are those errors that the application must handle for
their code to compile at all: Developers must catch and handle it in a try-
catch block or explicitly re-throw it. For instance, in Java, we can tell the
compiler that whoever calls the writeList function must handle an
IOException by using the keyword throws in the function’s signature:

1. public void writeList() throws IOException {
2. //…
3. }

However, the compiler cannot find all exceptions. Think of Java’s
ubiquitous NullPointerException. This exception will be thrown at
runtime if we try to access an object’s attribute or method referencing a
null object reference. The following code snippet exemplifies the situation:

1. List nullList = null;
2. nullList.toString(); // a NullPointerException is thrown
3. //becase nullList is null

NullPointerException is probably the most common and less informative
exception in Java, as the exception itself does little to explain why the
variable is null.
In Java, it is almost impossible for the compiler to know at compile time
that a reference to an object will cause a NullPointerException; most of
the time, null values are defined at run-time or passed as parameters, as
follows:

1. boolean createOrder(Items itemsParam) {
2. Order order = new Order(itemsParam);
3. return order.items.size() > 0;
4. }
5. createOrder(null); // causes a NullPointerException because
6. // order.items is null

This situation is why we always do “null checks” on function parameters:
To avoid objects getting null references unexpectedly:

1. boolean createOrder(Items itemsParam) {
2. Items items = itemsParam;
3. if (items == null) {
4. items = new Items();
5. }

6. Order order = new Order(items);
7. return order.items.size() > 0;
8. }
9. createOrder(null); // returns false

As there is no easy way to assert these exceptions at compile-time, we call
them unchecked exceptions; and they require that developers use their
experience to know how and where to handle them correctly.

Note: Some coding languages like Rust have no ‘null’ values. They use
“Optional” objects: A wrapper that makes it explicit that a value may
or may not have a value. In order to access their value, optional
objects force developers to deal with the case where the value is
empty.
Another example is Kotlin, whose variables by default do not allow
null values. If we want to make an exception, we must explicitly
declare the variable as “nullable”.
These patterns allow compilers and developers to assume that all
values by default are always defined and show errors at compilation
time for cases where we are not correctly handling possibly-null
references.

Errors as return values
Not all coding languages follow the try-catch-exception pattern. Code
languages like Golang consider errors as values that are part of the regular
flow of the application; as such, the code to handle them also belongs to the
main application’s flow.
For instance, the same use case where we want to open a file in Golang
needs to handle errors as follows:

1. content, err := ioutil.ReadFile(filename)
2. if err != nil { // if the error is not null, there was an

error

3. return nil, err
4. }

5. return content, nil

Functions that can fail would return two parameters: One with the actual
result of the operation and a second one that possibly contains a reference to
an error object. If the error variable is nil -which means null- we can
assume the operation was successful.
By making errors a part of the main execution flow, the language
specification forces developers to handle them. Unlike exceptions where we
can wrap all our code in a try block with the catch-all Exception class to
deal with all errors, code languages that return errors require developers to
capture and handle each error returned by a function. While this can be
cumbersome, it also makes error handling more explicit and harder to
ignore.
Another significant advantage of returning errors over exceptions is that it
increases the visibility of function calls in the application that could fail.
Errors are explicitly displayed in the code. On the other side, when using
exceptions, each line in a function could potentially throw an exception.
In fact, the use of checked exceptions was how some coding languages tried
to address the lack of visibility of possible errors in the code, with mixed
success. However, checked exceptions still lack the clarity of returned
errors.
So, at the end, which is better? Is it throwing exceptions or returning errors?
We will find advocates for both approaches and, in the end, the code
language we are using in our project will constrain our decision. Each
approach has its advantages and you will only know which one you prefer
until you use them both.
We can debate the pros and cons of each approach, but what is essential for
any developer to know is how to deal with errors effectively, regardless of
whether they are caught or returned.

Implementing good exception handling
Good exception handling is straightforward in principle but hard in practice.
One significant cause of this is that developers do not like to think their
code can produce errors, as we associate errors with poorly done work.

The truth is, while we must do everything we can to avoid introducing error
conditions in our application, no application will be 100% bug-free. The
only application that will always be free of defects is that which has no
code at all.
Once we accept that we software developers are fallible humans, we have to
create a multi-tiered plan to help us prevent errors from affecting our
application and our users negatively:

Preventing all the errors we can.
Handling and mitigating errors that have reached a production
environment.
Loging all errors.

Preventing all the errors we can
Before we start handling errors, we need to prevent as many of them as
possible. As mentioned earlier, we cannot prevent all errors. What we can
do, though, is to put in place enough validations and processes to help
prevent the most common errors from being introduced into the application
in the first place:

Testing: We have dedicated a whole chapter in this book to software
testing and how it helps us catch errors before they reach production
environments.
Linting/static code analyzers: Just as modern compilers for
languages like Rust or Golang will report possible errors at compile
time, code analyzers allow developers to search for code patterns or
“smells” which usually lead to bugs.

Remember the Pareto principle (or also called the 80/20 rule): 80 percent
of outcomes (in this case, defects) are the result of only 20% of the causes.
Focus on that 20% source of errors to maximize the results of your effort.

Note search term: Six Sigma
In the manufacturing world exists the understanding that we will
never have zero defects. Some process improvement methodologies
aim to reduce these defects as much as possible. For instance, Six

Sigma is a set of techniques oriented to understanding why defects
happen, and how to standardize and improve processes to reduce
variation and defects.
World-class companies that follow methodologies like Six Sigma focus
on achievable and measurable goals. These processes are iterative,
and teams constantly search for ways to improve their processes to
produce fewer defects.

Among the errors that can be prevented are those related to quality issues:
lack of validation, bad coding patterns and so on. Errors out of our control
are things like networks, third-party dependencies, conflicting browser
versions, among other erratic adverse conditions that can only be handled,
not prevented.

Handling and mitigating errors in production
Once we have done all we can to find and fix all defects we could during
development, what do we do with the rest of the latent errors hiding and
lurking deep within our application? We apply the try-catch and null-
checking-errors features we have been discussing in this chapter: Catch the
error, log it and recover.

Defining good error messages
Our main goal when handling errors is to make them as invisible as possible
to users. If we can recover from errors without users knowing they
happened in the first place, we would have achieved this goal.
However, most errors cannot be fully handled without the user’s
intervention. Error messages communicate to users (and developers) what
to do to recover from the error state in which they find themselves. Good
error messages help users to recover by themselves with little to no
intervention.
What makes a good error message? Error messages should use simple and
clear language. They should also help users answer the following questions:

Was the error caused by a user’s action? If not, let them know it’s not
their fault.

What do they need to do to recover? If nothing, let them know.

Remember that detailed errors are great for developers but not for users.
Error messages should be friendly to regular users, but informative enough
for software developers who try to debug them. The least amount of data
you include in the message, the easier it will be for users to act on it.

Bubble up!
Errors are like water or foam: They bubble up across the execution stack,
starting from the function that caused the error, all the way up to the main
application process, as shown in Figure 7.1:

Figure 7.1: Visual representation of the stack trace. Errors that are not handled will bubble up

Developers can catch and handle the error inside any of the functions in the
execution stack. If the error is not handled, it will always bubble up to the
main process.
To illustrate the idea in a better way, let us translate this into the following
JavaScript code. We can simplify a use case to see how an exception thrown
at the end of the stack bubbles up to the start:

1. class FileNotFoundError extends Error {
2. constructor(message) {
3. super(message);
4. this.name = “FileNotFoundError”;
5. }
6. }
7.
8. function main() {
9. findProduct()

10. }
11.
12. function findProduct() {
13. // do more stuff
14. findCatalog()
15. }
16.
17. function findCatalog() {
18. // do more stuff
19. return openCatalogFile()
20. }
21.
22. function openCatalogFile() {
23. // simulate an error while opening a file
24. throw new FileNotFoundError(“catalog.xml”)
25. }
26.
27. main()

As described in Figure 7.1, we will see that the findProduct function calls
the findCatalog function, which in turn tries to fetch the catalog’s data

from a file using the openCatalogFile function. Notice how we have no
try-catch blocks yet.
If openCatalogFile throws an exception, you will see an error message as
follows:

1. FileNotFoundError: catalog.xml
2. at openCatalogFile (…/chapter7/exception/handling-

errors.js:23:11)

3. at findCatalog (…/chapter7/exception/handling-

errors.js:19:5)

4. at findProduct (…/chapter7/exception/handling-

errors.js:14:5)

5. at main (…/chapter7/exception/handling-errors.js:10:5)
6. at Object.<anonymous> (…/chapter7/exception/handling-

errors.js:26:1)

While this error is informative, we need to also recover from it. We have aa
couple options for recovery:

Retry the action. For instance, errors that make network requests may
fail due to a timeout or any other network issues which may be
transient.
Execute a fallback action: a “plan B” to execute when the original
function fails, like a reduced version of the action we originally
wanted to take.
Skip the current action and return an error message. As long as the
error is handled before it reaches the main process, the application
may be able to continue operating.

Providing a fallback
In the existence of errors, users expect the application to work, even if its
functionality is degraded or reduced. It’s always preferable to execute a
fallback action than just returning an error message.
We will provide a fallback for the previous example: if accessing the
catalog file fails, we will choose to serve a simple catalog that is stored in
memory. The catalog for this example has only one product:

1. var fallbackCatalog = {
2. product1321: {
3. name: “Deodorant”
4. }
5. }

How well we can handle the errors depends on choosing where to handle
the error. As the error bubbles up, each function in the stack has less
flexibility to handle it.
We can handle the error within the findProduct function:

1. function findProduct() {
2. try {
3. findCatalog()
4. } catch (error) {
5. // the error stops bubbling. It will not reach

“main”

6. }
7. }

Or we can choose to keep propagating the error manually by skipping the
catch block or by re-throwing it:

1. function findProduct() {
2. try {
3. findCatalog()
4. } catch (error) {
5. // do something and then bubble the error up to

“main:”

6. throw error;
7. }
8. }

We must handle the error as close as possible to the function that raised it,
as it gives us more options on alternative actions.

For instance, if we try to bubble the error up to the main function, the best
we can do is to retry the whole findProduct function:

1. function main() {
2. try {
3. findProduct()
4. }
5. catch(err) {
6. // handle here
7. }
8.
9. }

If the error is not transient (only happens for a short period) we would need
to either call a different implementation of findProduct or pass extra
parameters inside the fallback function to try an alternate action. Either
way, this is a bad practice as it exposes implementation details that should
remain internal to findProduct.
Nevertheless, if we capture the error right where it was thrown inside
findCatalog, we have more control to provide a suitable fallback:

1. var simpleCatalog = {
2. product1321: {
3. name: “Deodorant”
4. }
5. }
6.
7. function findCatalog() {
8. try {
9. // do more stuff

10. return openCatalogFile();
11. } catch (error) {
12. // log the error and return fallback catalog

13. return simpleCatalog
14. }
15. }

Now, all implementation details are correctly encapsulated within
findCatalog: From the point of view of its parent functions (findProduct
and main), no error was ever thrown, and the application keeps working
correctly for the user, even if it provides a reduced catalog.

Letting the error propagate
We can see something concerning in the code example: While users are not
as angry at us because they can still use the application, the error is still
there. While handling the error, we swallowed it: We hide the error,
pretending nothing ever happened. While that may be a semi-positive
experience for the users, it obscures the real problem from the developers
who can fix it.
Error swallowing is an awful (and widespread) practice. Many developers
write try-catch blocks where the catch block is empty:

1. try {
2. // some code
3. } catch (error) { }

These blocks will not fix the error; they barely hide it. Then, weird behavior
starts happening in the application with no explanation: The product’s
catalog is empty but no one knows why thus resulting in a bad user
experience and no way for developers to fix it.
Between swallowing the error and just letting it bubble up, we prefer to let
it propagate as high as possible while keeping the application alive. In that
way, we would still get a bad user experience, but we can get some hints on
what is wrong with the application.
Is there a use case where we need to propagate exceptions? As our needs
for error handling monitoring become complex, some developers would
like to handle errors in more than one place.
For instance, if the openCatalogFile function was part of a library
maintained by a separate team of developers, they might want to handle the

error themselves and return a friendlier error message, but at the same time,
they want to allow the application itself to do some more handling such as
creating a new catalog file.
In this case, the developers of openCatalogFile may choose to catch the
error, partially handle it, and then re-throw it so the developers of the main
application can catch it themselves. This example might sound contrived,
but situations like these are common in large applications where teams of
multiple developers work in parallel.
Now, coming back to the fallback we introduced in the code example, we
not only want to propagate the error, but we need to log it.

Finding production errors with logging
All errors that cannot be found during the development or testing phases
will unavoidably surface for users in production. If we only had one or two
users, finding and fixing errors in production would be very easy: We can
talk to them to find out if they have experienced any unexpected behavior in
the application. However, as we (hopefully) gain more users, finding errors
becomes a more significant challenge.
The first step to fixing or mitigating an error is to detect it and diagnose it.
Some errors are easy to find, especially critical ones that block all users
from using the application. Other errors happen just in particular conditions,
which can still apply to a large percentage of our users but are hard to
reproduce for developers.
Logging errors allow us to capture a snapshot of an error in a real-world
scenario.
Logging is the act of creating a record of an incident or action. Logging
helps us keep track of the application’s state in application environments we
cannot easily analyze directly, like in test and production servers. While it is
beneficial in the context of diagnosing errors, logging is not only for
capturing errors but other information worth keeping track of:

User log-in attempts. We can use this data to determine if malicious
users are trying to access the application through brute force or
password guessing.

Requests to resources. By keeping track of requests done to things like
API endpoints, we can extract information like usage metrics, client
statistics, latency, and load times, among other useful statistics.
Warnings. Events that are not necessarily errors but might be helpful
while diagnosing other errors. These can be warnings about using
deprecated dependencies or tools, insecure passwords, unusual traffic
patterns, and other out-of-the-common events.

Logging is such a crucial action that most coding languages offer native
libraries to allow applications to create log entries. For instance, we can use
Python’s library logging as follows:

1. import logging
2.
3. logger = logging.getLogger(‘main.py’)
4.
5. logger.warn(‘This is a WARNING log entry’)
6. logger.error(‘This is an ERROR log entry’)

We can configure most aspects of the log, such as the format of each log
entry and the location where they are stored.

Anatomy of a log entry
In its purest form, log entries are plain text strings. For instance, we can
format a log entry as follows:

1. WARNING: 2021-11-05 17:00:12,737 - example_logger.py - This
is a Warning

There are no hard limits on how log entries should be structured, as long as
if follows a pattern previously agreed by the development team; this
example follows a typical pattern. Notice the information this log line
includes:

Log level: These are usually INFO, DEBUG, WARNING, and ERROR. Having
log levels help us filter log entries by their criticality: If we are trying
to diagnose an issue, we can filter out all messages that are not errors.
However, if we are running the application locally, we might want to

enable all DEBUG messages to help us better diagnose how the
application’s internal state is behaving.
The date and time when the log entry was created.
The name of the file or class which triggered the log entry (e.g.
example_logger.py).
The entry’s description: A text string describing why the log entry was
made.

Log entries tend to be stored in the order they were created. Like other
time-series data, once we have enough entries in our log, we can piece
together larger events within our application.
For instance, take a look at the following list of hypothetical log entries:

1. INFO: 2021-11-05 17:05:52,929 - login.py - Log-in

successful: User 1312325

2. INFO: 2021-11-05 17:05:52,929 - login.py - Log-in

successful: User 1331232

3. WARNING: 2021-11-05 17:05:52,929 - login.py - Log-in

unsuccessful: User 00001

4. WARNING: 2021-11-05 17:05:52,930 - login.py - Log-in

unsuccessful: User 00002

5. WARNING: 2021-11-05 17:05:52,931 - login.py - Log-in

unsuccessful: User 00003

6. WARNING: 2021-11-05 17:05:52,933 - login.py - Log-in

unsuccessful: User 00004

7. …
8. WARNING: 2021-11-05 17:05:54,929 - login.py - Log-in

unsuccessful: User 00320

9. WARNING: 2021-11-05 17:05:54,930 - login.py - Log-in

unsuccessful: User 00321

10. INFO: 2021-11-05 17:05:54,929 - login.py - Log-in

successful: User 00322

11. INFO: 2021-11-05 17:05:55,929 - login.py - Log-in

successful: User 1331433

From the contents of this log, we can observe a couple of things:

We are logging each log-in attempt done by our users.
At 2021-11-05 17:05, our application had multiple log-in attempts by
progressively increasing user IDs, all within a couple of seconds.
Then, user 00322 was able to log in successfully.

From these observations, we can deduce that someone was doing an
automated brute-force attack against our application, trying to find a valid
user. Furthermore, we can see that, with a very high probability, they were
successful in their attack at their 322nd attempt.

Note: Logging every log-in attempt in an application may not be the
best practice if we have too much user traffic. Remember that log files
or databases use disk space, and high traffic rates may lead to hard
drives filling quickly.
A better practice may be to only log the log-in activity that may be
suspicious, like users trying to log in after a given number of failed
attempts.

Notice how none of the log entries were actual errors; unsuccessful log-in
attempts are common among real users, so they have to be considered as
WARN or INFO, but we still can deduce there is a problem with the
application. This kind of error detection cannot be possible without an
effective logging strategy.

What to log?
There is no real limitation in the kind of information we can or cannot log
(beyond disk space constraints). However, it is important to be smart about
it and recognize what information is actually useful to be logged.
If we log too little data, we risk failing to detect errors happening in
production. And if we log too much data, we risk obscuring useful
information with “garbage” log entries that will rarely be useful.
Logging is an evolving process. Start by defining an initial set of attributes
that should be logged for specific actions or events, and add or remove data
to be logged as you see fit.

For instance, you can start logging all the details each of web request: OS
and browser type, time and date of the request, and so on. However, a
couple of months later you may find out that you are never really using the
OS information for each request. It would be perfectly fine at this point to
stop logging this information. In the same way, you may recognize other
attributes that you were not logging that may need to be added.

Designing good log and error messages
For any event that is worth being logged, remember we need to answer the
following questions:

What happened?
What should have happened?
Are there any differences between the expected and actual behavior?
Who was involved in the event?
When did it happen?
What was the context in which the event happened?
Did it involve specific versions of a component, like a browser?
If this was an error, what was the exception? What is the stack trace?
If this is log entry is specific to a part of the infrastructure like a
server, what is the server address?

Note About sensitive information and logging Even if they are safely
stored in a server’s file structure, log files still are text-based content.
Malicious users know that logs potentially store important
information about the application, making these entries a particularly
attractive goal.
A good practice is not to log any sensitive information (e.g.,
passwords, credit card numbers, and social security numbers, among
others) that malicious users may take advantage of.
Of course, sometimes logging sensitive information is necessary to
diagnose the error; and in those cases, it should be stored in an
encrypted format and only for the shortest time possible. The idea is

that compromised log files should not reveal any data that can be used
against the application.
For more details about application security concerns in logging, check
OWASP’s cheat sheets. A link is provided in the references section.

The best application logs clearly and concisely allow developers and system
administrators to see the big picture of the application’s state and possible
causes for the logged error.

Persisting log entries to file
By default, files are directly printed to the application’s standard output (for
example, the console or terminal). If we want to persist the log entries, we
need to redirect the standard output to a text file or configure the logger to
use a text file.
Let us revisit the last code example we went through, but this time in
Python:

1. import logging
2. import os
3. import sys
4.
5. logfile_name = os.path.dirname(sys.argv[0]) +

“/logfile.log”

6. logentry_format = ‘%(levelname)s: %(asctime)s - %(name)s -
%(message)s’

7.
8. logging.basicConfig(format=logentry_format,

level=logging.DEBUG)

9.
10. logger = logging.getLogger(‘login.py’)
11. handler = logging.FileHandler(logfile_name)
12. logger.addHandler(handler)
13.

14. def openFileCatalog(file_name):
15. return open(file_name, ‘r’)
16.
17. def findCatalog(product_id):
18. try:
19. openFileCatalog(“catalog.xml”)
20. except Exception as e:
21. logger.error(‘Could not open the catalog for product

{}’.format(product_id), exc_info=True)

22.
23. findCatalog(123321)

It’s the same basic example, but this time we only use two functions
findCatalog and openCatalogFile. In this example, we are trying to open
a real file with “open(file_name, ‘r’);”. This action should fail as we
have no catalog.xml to read.
Let us focus into the code used for the logging configuration:

1. logfile_name = os.path.dirname(sys.argv[0]) +

“/logfile.log”

2. logentry_format = ‘%(levelname)s: %(asctime)s - %(name)s -
%(message)s’

3.
4. logging.basicConfig(format=logentry_format,

level=logging.DEBUG)

5.
6. logger = logging.getLogger(‘login.py’)
7. handler = logging.FileHandler(logfile_name)
8. logger.addHandler(handler)

While this configuration is specific to Python, most coding languages
follow the same pattern. Here are the highlights of this code snippet:

1. The logfile_name variable holds a reference to a logfile.log file. In
this case, the reference points to a file stored in the same folder as the

Python script is currently executing, but typically developers create
directories exclusively for log files.

2. The logentry_format variable holds a template that defines each log
entry format, as discussed in the previous sections of this chapter.

3. The Logging.basicConfig function sets the settings which that be
used for all logger instances. In addition to the log entry format, in this
example are setting the lowest log level which should be stored (from
low to high: DEBUG, INFO, WARN, and ERROR).

4. The logging.getLogger(‘login.py’) function creates a logger
instance for this specific file. Instead of ‘login.py’, we can pass the
name of the class executing the code.

5. The logging.FileHandler(logfile_name) function creates a new
file handler in the location given by logfile_name.
logger.addHandler(handler) adds the file handler to the current
logger instance.

In the catch (or except as it’s called in Python) block, we append the
following line of code to create the log entry:

1. except Exception as e:
2. logger.error(‘Could not open the catalog for product

{}’.format(product_id), exc_info=True)

Since we have already defined the format and location for the log file in the
preceding configuration, all we have to include in each log entry creation is
the log description and whether we should include the stack trace or not
(exc_info=True will include the stack trace).
The log entry created in the preceding example should look like this:

1. ERROR: 2021-11-09 08:42:11,461 - login.py - Could not open
the catalog for product 123321

2. Traceback (most recent call last):
3. File “…/chapter7/logging/python-logging.py”, line 20, in

findCatalog

4. openFileCatalog(“catalog.xml”)

5. File “…/chapter7/logging/python-logging.py”, line 16, in
openFileCatalog

6. return open(file_name, ‘r’)
7. FileNotFoundError: [Errno 2] No such file or directory:

‘catalog.xml’

If we execute the script, we should see that, in addition to logging into the
standard output console, a logfile.log file was created. All log entries
created by the logger will be appended to that file.
Notice that this single log entry follows all the patterns we have discussed:
The right log level (ERROR), date and time, the name of the file that created
the log entry, the description, and the stack trace describing the exact error.
Also notice how this log entry answers all the questions we might have
about the error: The user-defined message “Could not open the catalog
for product 123321” gives us more context about the action that caused
the FileNotFoundError exception: The application was trying to open the
catalog file for the product with ID 123321. We have all the information we
need to replicate and debug this issue in our development machine.

Handling errors in distributed systems
Error management in distributed applications is not significantly different
from handling errors in single services, which we have discussed in this
chapter.
In distributed systems, we have multiple services or applications running in
parallel, possibly each deployed into its own server. Following the log
configuration we just described will result in each service creating its log
file, as shown in Figure 7.2:

Figure 7.2: Distributed systems: Each service has its own log file

The challenge here is to access the log files. It is not too hard to access a
single server remotely through SSH or any other communication protocol
and extract the contents of the log file. Nevertheless, for distributed
systems, we have N servers, each creating a high volume of entries in real-
time. The distributed services architecture is a good case for log
aggregation, which takes each service’s log entries and sends them to a
central location.

Figure 7.3: Aggregating logs into a central service

As seen in Figure 7.3, each service is deployed along with a log
aggregation agent: A script that is running on the same server as the
application. This agent detects changes to the local log files, formats them,
and sends them to a centralized logging service. Then, when we need to
diagnose an error, we only have to visit the central logging service. Now we
can access the logs for the entire system from a single location.
Aggregation agents append an identifier to each aggregated log entry, in
case we need to know what server created it.
What is remarkable about these aggregation agents is that they can parse
distinct formats of log entries. We can aggregate log files generated by our
application or log files created by other services like servers, databases, and
any other service which generates log files on their own.

Using case: Logging errors with the ELK stack
The stack Elasticsearch, Logstash, and Kibana (ELK) is the most
popular log management platform. Each tool has a job:

Logstash aggregates, transforms, formats logs, and sends them to
other services like Elasticsearch where they are aggregated.
Elasticsearch is a full-text search engine based on Apache Lucene. It
stores and indexes data, providing an API to filter and query its
contents. Elasticsearch can be considered a NoSQL database.
Kibana is a web application that allows users to interact with
Elasticsearch and provides helpful visualization tools.

One significant advantage of the ELK stack is that it is open-source, thus
making it an affordable solution for big and small companies alike. Whole
clusters of Elasticsearch and Kibana can be deployed in private networks,
allowing teams to control and monitor all the logs produced by their
applications and servers.
The ELK stack fits perfectly in the centralized-logging service we discussed
in the previous section. We can swap the names and get an excellent visual
representation of how the ELK stack works. Figure 7.4 shows this
representation:

Figure 7.4: The ELK stack

With little effort, we can have a complete logging monitoring platform up
and running.
In the following section, we will rely on the ELK stack to centralize and
monitor the errors for our application.

Logging errors locally
The first step is to configure logging into our application. If we are using
Python, we can rely on the logging library; or if we are using Java, you can
use log4j.
For our example, we will create a script that will create many log entries to
simulate an application with a semi-high amount of traffic:

1. import logging
2. import os
3. import sys
4. from time import sleep
5. import random
6.
7. logfile_name = os.path.dirname(sys.argv[0]) +

“/logfile.log”

8. logentry_format = ‘%(levelname)s: %(asctime)s - %

(message)s’

9.
10. logger = logging.getLogger(‘logstash-test.py’)
11. formatter = logging.Formatter(logentry_format)
12.
13. handler = logging.FileHandler(logfile_name)
14. handler.setFormatter(formatter)
15. logger.addHandler(handler)
16. logger.setLevel(logging.DEBUG)
17.
18. for i in range(60):
19. for i in range(random.randint(0, 200)):
20. logger.warning(“This is warn”)
21.
22. for i in range(random.randint(0, 200)):
23. try:
24. raise FileNotFoundError(“config.xml”)
25. except Exception as e:
26. logger.error(‘Could not open the config file’,

exc_info=True)

27.

28.
29. for i in range(random.randint(0, 200)):
30. try:
31. raise Exception(“Product does not exist”)
32. except Exception as e:
33. logger.error(‘Could not create product’,

exc_info=True)

34. sleep(2)

We can see the same logger configuration we discussed earlier. The logger
stores all entries in a local file named logfile.log. We also have the
following three loops:

One loop executes warning-level log entries N times, with N being
between 0 and 200.
Two loops execute error-level log entries N times, with N being
between 0 and 200.
One global loop in the top of these other loops, running 60 times and
waiting for a second at the end of each iteration.

Essentially, we are simulating a scenario where an application with multiple
users is generating a high number of log entries for one minute. This
simulation should give us enough log entries to create a good example
visualization.

Configuring Logstash
We need to install the Logstash agent in the same server where the logs are
stored to monitor changes to the log files and send the new entries to
Elasticsearch. In the “Resources” section at the end of this chapter, you can
find a link to the Logstash installation guide for your chosen OS.
Once we have installed Logstash, we will create a Logstash configuration
file with the name logstash-simple.conf:

1. input{
2. file{

3. path => “/absolute-path-to-code/Code/chapter7/elk-

stack/logfile.log”

4. start_position => “beginning”
5. codec => multiline {
6. pattern => “^(WARNING|INFO|DEBUG|ERROR)”
7. negate => true
8. what => “previous”
9. auto_flush_interval => 1

10. }
11. }
12. }
13. filter {
14. grok {
15. match => {
16. “message” => “%{LOGLEVEL:log-level}: %

{TIMESTAMP_ISO8601:timestamp} - %{GREEDYDATA:message}”

17. }
18. }
19. date {
20. match => [“timestamp”, “ISO8601”]
21. }
22. }
23. output{
24. stdout{codec => rubydebug}
25. elasticsearch{
26. hosts => [“localhost:9200”]
27. index => “my_python_exceptions_index”
28. }
29. }

There are three attributes at the root of the file: input, filter, and output.
Each one of them provides a configuration for the main tasks Logstash
performs: Read the log file, parse and transform each log entry, and send it
to the aggregation service.

Logstash input
The input attribute indicates the location and format used by Logstash to
read the log entries. In this case, it will read the logfile.log file we just
created. The start_position => “beginning” sub-attribute tells Logstash
to start reading the file from the first line.
Since, by default, it will try to read the file line by line, the coded =>
multiline attribute is configured to consider each line that does not match
the regex attribute pattern as part of the previous line. This unifies log
entries that have multiple lines (like Python exceptions) into one single
entry.
The following log entry will be considered as a single record:

1. ERROR: 2021-11-09 12:49:10,611 - Could not open the config
file

2. Traceback (most recent call last):
3. File “/absolute-path-to-code/chapter7/elk-stack/logstash-

test.py”, line 22, in <module>

4. raise FileNotFoundError(“config.xml”)
5. FileNotFoundError: config.xml

As the log entries are read as defined in the input configuration, they will be
processed as indicated by the filter section.

Logstash filter
The filter attribute defines how Logstash will parse the log entries. The
main tool used for parsing is called Grok, which is a regex super-set.
Logstash has many predetermined patterns, allowing us to match most of
the common log formats. For instance, we use this Grok pattern to match
our logs:

1. “%{LOGLEVEL:log-level}: %{TIMESTAMP_ISO8601:timestamp} - %
{GREEDYDATA:message}”

In comparison, this is what a log entry would look like:

1. WARNING: 2021-11-09 12:37:27,323 - This is warn

It is easy to see how the pattern will match and extract the information from
this log entry:

WARNING will be assigned to the log-level attribute.
2021-11-09 12:37:27,323 will be assigned to the timestamp

attribute.
This is warn will be assigned to the message attribute.

We can add as many filtering patterns as we like. For instance, we added a
date filter that matches any dates in the log entry in the example. Having
multiple filtering patterns gives us flexibility by allowing us to only extract
the information we need from the logs.
After being parsed by the patterns in filter, each record will be sent to the
locations configured in the output attribute.

Logstash output
The output attribute defines where we will send each parsed log entry. We
can configure multiple locations in the same configuration file. In this
example, we are sending it to two locations: stdout -the application’s
console- and Elasticsearch database.
For the Elasticsearch configuration, we provide two attributes: the host
where we will host Elasticsearch (localhost:9200 for this example) and a
name for the index (my_python_exceptions_index). An index is the
Elasticsearch analog to a database table.
Having created the configuration file, we now can execute Logstash:

1. logstash -f logstash-simple.conf

This command will create a new process in the server (or your development
machine) that will continuously scan the log file configured in the input,
detect when new entries are added, and process them as configured.

Installing and configuring Elasticsearch and
Kibana
There are many ways to install and configure Elasticsearch and Kibana, and
we need to define which one is the best for us. Since arbitrarily picking one
would not fit every use case for everyone reading this book, we have added
a link to Elastic’s up-to-date installation documentation in the references
section at the end of this chapter.
We have included a Docker Compose file along with the code that is
distributed with this book. If we install Docker (for which we have also
included a link to the installation guide in the “References” section), all we
would have to do is to run the following command in the same folder where
the docker-compose-yml file is on:

1. docker-compose up -d

That will create instances of both Elasticsearch and Kibana in our Docker
engine. They can be accessed through the localhost URL using their default
ports 9200 and 5601.

Note About describing installation steps in books
Books that describe step-by-step instructions about how to install
something do not age well. Most of the time, the tool will evolve, new
versions will be released, and the installation process will change.
Instead of focusing on the specific steps used to do something that is
time and product-specific, it is better to provide insight into the
important concepts that will remain part of the product as it evolves
and grows. We will always find an up-to-date installation guide on the
Internet, so it is better not to spend time and pages of our book on
that.

Creating Kibana dashboards
Kibana is based on dashboards: Collections of visual representations of the
data stored in Elasticsearch and any other data sources integrated into
Kibana. These can contain tables, charts, and graphs, among other types of
visualization tools.

Kibana is particularly friendly the first time we use it. Once we execute
Logstash and log entries start to be sent to Elasticsearch, Kibana will
identify an existing index my_python_exceptions_index.
The first step is to create an index pattern, which is how Kibana reads and
parses Elasticsearch data. This step is automated, as all we have to do is go
to the following URL of our locally-deployed Kibana, and click on “Create
index pattern”:

1. http://localhost:5601/app/management/kibana/indexPatterns

In the name input field, type the string “my_python_exceptions_index”
and select the “timestamp” field from the drop-down menu. Click on the
“Create index pattern” button, and you will be done, as shown in Figure
7.5:

Figure 7.5: Creating an index pattern in Kibana to parse the log entries we just stored in
Elasticsearch

Having created the index pattern, we can create a new dashboard. To do so,
navigate to the following URL:

1. http://localhost:5601/app/dashboards#/create

There are many steps to create a dashboard, but they are pretty intuitive. We
will not go much in detail, but, in general, we will create visualizations,
which are different views of the data. The overall steps to create a
visualization are as follows:

1. Click on “Create visualization”.

2. Select the visualization type. For this example, pick any of them.
3. Select the fields we configured in Logstash’s regex to parse from the

log entries (for example, log-level, message, timestamp, and so on),
and drag-and-drop them in the visualization canvas.

4. Save the visualization and return to the dashboard.
5. If it is not included already, add the new visualization to the

dashboard.
6. Repeat all steps to add as many visualizations as we wish.

In Figure 7.6, we can see how a dashboard created using the log entries we
just produced in this example will look like:

Figure 7.6: Kibana dashboard for the index “my_python_exceptions_index”

Along with the provided source code for this chapter, we’ve included a file
named “exported-dashboard.ndjson”. This file contains all the definitions
of the index patterns, dashboard, and visualizations you see in Figure 7.6.
We can import that definition file in the following URL:

1. http://localhost:5601/app/management/kibana/objects

Please consider that by the time you read this book, Kibana’s interface may
have changed, and the process of creating and importing the dashboard may
be different. That is the reason why the steps to create the dashboard are
only high-level descriptions.

A/B testing and gradual deployment
The last strategy to mitigate the impact of errors is a direct consequence of
A/B testing.
In A/B testing, we deploy two different versions of a feature simultaneously
to different segments of our users. For instance, we can deploy a new
variant of the “Create order” button, (which is visually larger) to 5% of
our users, while the rest still see the existing, smaller version of the button.
By deploying different “variants” or versions of the same functionality, we
can compare their adoption and usage statistics and find out which one is
more successful. If the metrics find that a specific variant of the tested
feature has more engagement than the others, we can choose that variant to
be deployed to all users.
While A/B testing is excellent for comparing variants of existing features,
the process of deploying a new feature to a small segment of users has the
extra benefit that any errors introduced by the new feature will only impact
users who belong to the tested segment.
We can embrace this consequence and plan the gradual deployment of new
features and other significant changes: Deploy new changes to a small
percentage of the users and wait for a while; if no errors are found, then
increase the percentage of users who can see the feature. Please take a look
at following figure:

Figure 7.7: Gradually increasing the percentage of users who have access to new features

By gradually deploying new features or significant changes, new errors will
only impact a few users. While the error impact is still negative, it is not the
same that 1% of our users see the error as to have 100% of them being a
victim of them.

Creating a deployment plan
How should we split the deployment? In Figure 7.7, we see an example of
ramping to 10% of users for one week, checking for errors, deploying to
half the users if no significant problems are found, waiting again, and
finally deploying to the rest of the users. These numbers are used to
illustrate the process, and you should find a schedule that better suits your
users.
Applications with a large user base may want to deploy more slowly than
that, considering 10% of users may still be many users. Smaller applications
may want to deploy faster, as 10% of users may not be enough to find latent
problems.
You can start by creating a simpler plan: Deploy to 30% of users and then
all the way to 100% after a couple of days. If you notice that too many
errors are getting to 100% of users, then slow down the process. If the
process is taking too long, then speed up the deployment process.
Gradual deployment of new features is an important tool to contain the
negative impact of potential new errors.

Conclusion
No application is free of errors. One thing that separates junior developers
from seniors is knowing what to do to handle and mitigate errors found in
production environments.
We have seen how some code languages choose to produce and handle
errors by returning them from the functions which produce them. This
design choice enforces developers to handle errors instead of just hiding
them or ignoring them.
Most popular code languages, though, use exceptions for error handling.
Exceptions create separate flows of logic that the application executes when
“special” conditions like errors are met.
Whether it is by returning or throwing errors, it is our responsibility as
software developers to write code that handles or mitigates any error that
can be found. Some errors can be easy to find and handle, as they are
relatively expected in some operations like file management or network

requests. In contrast, others are the product of specific conditions of data in
runtime.
When possible, errors should have fallbacks that provide some default
behavior in case of errors. A good fallback is that which prevents users
from knowing an error even happened. Unfortunately, not all errors can be
handled as seamlessly.
All errors, regardless if they can be handled or not, should be logged.
Logging helps us keep track of significant events in the application, trace
back conditions that led to errors, and even detect malicious activity by
users.
Centralizing logs is the collection of log entries that usually are stored in
text files along with the application that generates them. Centralization
allows us to better analyze logs, especially when dealing with distributed
environments where independently accessing each server’s logs would take
significant time and effort.
In this chapter, we discussed using the stack Elasticsearch, Logstash, and
Kibana (ELK) as a platform to monitor and centralize logs. While this tech
stack is one of the most popular, other products fulfill the same
responsibilities. All these products follow the same patterns of reading log
entries from log files, parsing, transforming, and storing them somewhere,
and then using visualization tools to analyze them.
At last, we discussed how to create gradual deployment schedules to help us
mitigate the effect and severity of errors introduced by new features or large
code changes. The field of A/B testing provides multiple tools and
infrastructure to enable applications to be deployed just to a reduced
segment of users.
At this point of the book, we have reviewed the majority of basic elements
necessary to build the back-end part of software applications. In the next
chapter, we will move on to review more advanced topics like the use of
frameworks to accelerate the application development.

Resources
Best application security practices about Logging:
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sh

https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html

eet.html
Install ELK stack: https://www.elastic.co/guide/en/elastic-
stack/current/installing-elastic-stack.html
Install Logstash:
https://www.elastic.co/guide/en/logstash/current/installing-
logstash.html
Grok patterns: https://github.com/logstash-plugins/logstash-
patterns-core/tree/main/patterns
Docker installation guide: https://docs.docker.com/get-docker/
Docker Compose guide: https://docs.docker.com/compose/

https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://github.com/logstash-plugins/logstash-patterns-core/tree/main/patterns
https://docs.docker.com/get-docker/
https://docs.docker.com/compose/

F

CHAPTER 8
Adopting Frameworks

rameworks take care of code that we would need to write over and over
again every time we build a new app. They provide common patterns

and enforce best practices. Frameworks allow developers to concentrate on
building code that will solve their user’s problems and not in technical
concerns that show up in software projects repeatedly.
However, frameworks add an extra layer of complexity, requiring
developers to learn new interfaces and specifications. Some frameworks are
as big as the languages themselves, resulting in a steep learning curve. In
this chapter, we will explore the different kinds of problems frameworks
address.

Structure
In this chapter, we will learn the following topics:

What problems do frameworks fix
Common patterns addressed by frameworks
Choosing a framework
When not to use frameworks

Objectives
After completing this chapter, you should have a better picture about:

What problems do frameworks address?
Common patterns addressed by frameworks, like MVC, dependency
injection, among many other patterns.
When not to use frameworks.

This chapter is not an extensive guide about how each of the mentioned
frameworks works, as an entire book can be written about each. Our goal is
to provide heuristics on how and when to choose a framework, so you can
then go in-depth on them.
In a broader context, a framework can be any ‘recipe’ or a predefined way
of doing things. Frameworks are used across industries and even
governments to provide guidance to individuals or institutions on how to
implement policies or business plans. In this book, when we talk about
frameworks, we mean application frameworks.

What problems do frameworks fix?
As seen in Chapter 1, Building Multi-user Apps, we can split software
requirements into functional and non-functional. The code we write to
complete functional requirements is particular to the business case. If we
think of building software as baking a cake, functional requirements will
define the cake’s flavor, shape, colors, and any client-requested
customization.
Non-functional requirements, on the other hand, can be seen as choosing the
right ingredients for the cake: Choosing the type of frosting, the type of
‘sponge’ (the bread part of the cake), and what kind of toppings it should
have. In the cake analogy, non-functional requirements are the basic
foundations on top of which the cake’s functional requirements are built.
If we analyze some of the non-functional requirements (like frosting and
bread type) in the cake example, we can see that each of them has its own
recipe: A red velvet-based sponge will have a different recipe than a
vanilla-based sponge. Also, a cream-cheese frosting will be composed of
different ingredients than a classic buttercream frosting. The critical part
here is that each of these recipes is independent of the cake’s “functional
requirements”: buttercream frosting’s recipe does not change whether you
bake a wedding or a birthday cake. You can make frosting beforehand
knowing that you will be able to use it in both.
Every time we bake a new cake, we can either prepare our own frosting or
buy one already pre-mixed. Maybe making our frosting will produce a
better taste, but it definitely will take longer. Because of this, many bakers
prefer to find a good quality, pre-mixed frosting and use it instead of

making one every time they have to bake a cake, thus saving time which
they can use to work on the customization requested by the clients.

Solving existing problems
For most of the challenges or problems we find while building software
applications, there is a big chance that other developers have already
designed reasonable solutions. After all, if we think hard enough about any
new project, software applications can be decomposed on simpler
components for which excellent working solutions may already exist.
If the problem is ubiquitous enough, many developers have probably
encountered and solved it before. These developers may even have shared
their solutions in the form of open-source libraries. When working on a
budget, these open-source solutions can help us complete our project in
time.
At a lower level, when we build software applications, we use an existing
coding language. We would rarely build a new coding language exclusively
for building a web or mobile application. Since we would rarely build every
line of code in an application from the ground-up, bit-by-bit, the idea of
extending and building on top of the existing implementation of common
problems is central in software development.

Note Reinventing the wheel
When talking about adopting common software development
patterns, we usually want to use existing implementations of those
patterns instead of creating our implementations from scratch.
For instance, instead of implementing custom sorting and searching
algorithms, we will use an existing and well-tested library. An
example of library like these is the Collections Framework in Java.
There are some exceptions to this heuristic. Teams with very complex
requirements, commonly found in large applications, may find that
existing frameworks have a scope that limits their capabilities. In
these situations, developer teams may want to create their custom
implementations, most of the time extending existing frameworks or
following the same patterns.

Google Guava is an excellent example of a library created to fill the
gaps in existing data structures and collection operations
implementations.

Frameworks offer reusable solutions to challenges someone has already
encountered and solved.

Frameworks and design patterns
Since frameworks try to encapsulate known good practices, they
extensively use design patterns.
Much like frameworks, design patterns themselves are reusable solutions to
common problems; however, design patterns are abstract concepts. Also,
unlike most frameworks, design patterns are not language-specific: Most
design patterns can be implemented with any programming language. The
most popular design patterns are the “Gang of four design patterns”, which
focuses on the Object-Oriented Programming (OOP) paradigm. For
more details on these patterns, we’ve included a link in the references
section.

Libraries and frameworks
Going back to the cake analogy: Some of the “recipes” for non-functional
requirements can be “pre-baked” ahead of needing them so we can save
time when building a new application. These are commonly known as
libraries: Collections of reusable functions that can be leveraged to build
business-specific applications. Frameworks usually group one or more
libraries, but they are so much more than that.
We can think of taking multiple pre-made ingredients like frosting and
sponge and putting them together in a “cake-baking kit”. This kit produces
generic, blank cakes with little effort. These blank cakes then can be
“extended” with custom-made decorations.
Figure 8.1 shows a high-level view of the cake framework:

Figure 8.1: Viewing cake baking as a framework.

The framework generates a blank cake using its internal

libraries

These kits would allow bakers to concentrate on the “functional”
requirements of the cake. In software development, we call these “kits” or
collections of libraries and patterns frameworks.
Frameworks are boxed collections of reusable libraries, patterns, and
utilities. Frameworks abstract-out common patterns and concerns so
developers can focus on business requirements. Figure 8.2 shows how the
“cake framework” generates a blank cake that allows us to focus on
decorations.

Figure 8.2: Frameworks provide the foundation a blank cake so bakers can focus on business
requirements

Let us look at a concrete example to understand the point we are trying to
make in a better way.
In Chapter 2, The Client-Server Architecture, we discussed how HTTP
servers work, and we even went out of our way to build one. We also
mentioned that we would not want to use a custom-made server in
production because it would require too much work to do it securely and
performantly. We used Express to abstract out all the specifics of the HTTP
server.
Express is a web framework that helps developers build HTTP-based
applications. Here is the code snippet from Chapter 2, The Client-Server
Architecture:

1. const express = require(“express”);
2. const app = express();
3. const port = 8080;
4.
5. app.use(“/static”, express.static(“public”));
6.
7. app.get(“/”, (req, res) => {
8. res.send(“<h1>Hello World!</h1>”);
9. });

10.
11. app.post(“/”, function (req, res) {
12. res.send(“Got a POST request”);
13. });
14.
15. app.listen(port, () => {
16. console.log(`App listening at http://localhost:${port}`);
17. });

Notice we did not have to implement app.get or app.post ourselves. This
pre-baked HTTP server has everything it needs to function correctly while
at the same time allows developers to configure and extend it. We can take
the functions provided by the framework, sprinkle business logic on top,

and create a fully working application in no time. The HTTP server inside
Express is our blank cake, and the code we use to configure and extend it
are the cake decorations.

Pre-building abstractions
Writing software, especially in Object-Oriented Programming, means
abstracting features of a real-life object into common attributes shared by
all instances of the type of object. For instance, if we build a software
model of a car, most of them will have common attributes like a steering
instrument (a wheel or a yoke) and a semi-constant number of wheels
(usually, four).
Without frameworks, we can build every layer in this abstraction. Using the
same example of modeling a car using software, we can create classes like
”Car“,” Wheel“, or” SteeringInstrument“, each with its attributes (e.g.,
”Car” can have an attribute to store the size of wheels it uses).
If we assume that modeling cars can be a widespread problem, many people
will write their implementations of the ”Car” and “SteeringInstrument”
classes.
We can create one instance of the “Car” class and share it with the world.
Anyone who wants to model a car in their applications would not have to
worry about building these common, abstract classes. They can focus on
building the features that distinguish their specific car models.
The idea of pre-building abstractions is that we build the code with the goal
of being extended by other developers, instead of building the code to be
used by users directly.

Framework’s benefits
In essence, frameworks save time and effort. They encapsulate repetitive
tasks, models, and functions and put APIs in front of them so developers
can easily access all these features.
Most frameworks have a level of support for code generation, which means
they can provide a bare-bones version of the project. This code has spaces
or placeholders for developers to insert custom-made business logic. Some
frameworks call this code generation scaffolding.

Frameworks are beneficial to large-scale projects thanks to many of their
features:

Frameworks establish conventions. Teams with many developers tend
to struggle to find the best practices that fit their project the best.
Frameworks provide clear limits and conventions to allow developers
to move away from discussions about things like how to structure a
project or what code quality rules to enforce.
Frameworks tend to be modular, encouraging collaboration. Since
frameworks work on the concept of extending software, they are good
at separating concerns into multiple components or modules. For
instance, the separation enforced by MVC (which we will visit in the
next section) allowed front-end developers to work in parallel with
back-end developers.

Other advantages of the adoption of frameworks are:

Large applications can rely on frameworks to reduce their codebase.
Frameworks allow them to only include the code needed for fulfilling
business requirements.
Small teams who have starting building a new app can rely on
frameworks to speed up their development and release the first version
of their app as soon as possible.

Overall, the ultimate goal of a framework is to allow developers to spending
time building business-specific features, not spending time building
solutions for problems that have been solved already.

Common patterns addressed by frameworks
While theoretically any design pattern can be implemented as a library or
framework, some frameworks focus on the most common challenges in
software applications.

Automation tools and package managers
Compiling software applications is a multi-step process. For instance, if we
need to compile a Java application consisting of three classes, we will run
the following command line:

1. javac Order.java Ingredient.java OrderService.java

Things start to get complicated when we also need to compile the project
using external dependencies that, in Java, are packaged in Java ARchive
(JAR) files:

1. javac -cp lib1.jar;lib2.jar;lib3.jar Order.java

Ingredient.java OrderService.java

What if each of those JARs needs to import their respective dependencies?
How do we enforce that the dependency JARs follow a specific version?
Sure, there are shortcuts, like using the wildcard character (“*”) to match
multiple files simultaneously, but we still have to manage multiple paths to
libraries of dependencies within the project.
The first solution can be to build a script to automatize the compilation
process. In a Unix-based environment, applications make heavy use of the
‘make’ utility to control the compilation process. The source code for the
application will include a file named Makefile, which defines the
compilation process as a bash script. The following is an example of a
Makefile:

1. Order.class: Order.java
2. javac -cp lib1.jar Order.java

We can execute the tasks defined in a Makefile by running the command
make. A Makefile can include multiple commands if we need to use multiple
compilation targets, or if we need to do other tasks like cleaning existing
compiled files.
While ‘make’ is a very convenient tool, it has the downside that it is only
included in Unix-based systems. Also, all dependency-related tasks
(downloading the correct version of the external libraries into a shared
directory, managing which version to use, among other concerns) need to be
manually configured by developers.

Automation tools
Automation tools like Maven and Gradle provide both features to run tasks
like compilation, packaging projects into JARs or Web Application
Resource (WARs), and manage dependencies to external libraries.

Let us create a simple Java class to showcase how Gradle works. We will
create an executable Java class that uses Google’s Guava library for storing
and printing a list of ingredients.
First, we make sure we have installed Gradle. We have included the link to
the official installation guide in this chapter’s “References” section.
We will create a folder structure of a nested directory with a path of
src/main/java/hello and inside the hello directory create a class named
Application.java with the following contents:

1. package hello;
2.
3. import com.google.common.collect.ImmutableList;
4. import java.util.List;
5.
6. public class Application {
7.
8.
9. public static void main(String [] args) {

10. List<String> items = ImmutableList.of(“cheese”,
“tomato sauce”, “sourdough”);

11.
12. items.stream()
13. .forEach(System.out::println);
14. }
15. }

Using Guava is certainly unnecessary, as we can use Java’s native classes to
achieve the same goal. However, using Guava utilities help us provide an
example of an application that has a dependency on an external package.

Note: The directory structure ‘src/main/java/’ is a convention used by
most Java-based projects. Gradle assumes that all the source code for
the project is included within that directory.

The directory structure can be changed through the configuration
attribute `sourceSets`, within the same `build.gradle` file:
sourceSets {

 main {

 java {

 srcDir ‘src/java’

 }

 resources {

 srcDir ‘src/resources’

 }

 }

 }

At the root of our project (the same folder which contains the src
directory), we create a Gradle configuration file named build.gradle with
the following contents:

1. apply plugin: ‘java’
2. apply plugin: ‘application’
3.
4. mainClassName = ‘hello.Application’
5.
6. repositories {
7. mavenCentral()
8. }
9.

10. dependencies {
11. implementation “com.google.guava:guava:19.0”
12. testImplementation “junit:junit:4.12”
13. }

Let us evaluate this configuration. The first two lines provide most of the
default configuration used for compilation:

1. apply plugin: ‘java’

The java plugging includes all tasks to compile the Java classes inside the
src directory.
Next, the application plugin is applied to the project:

1. apply plugin: ‘application’
2.
3. mainClassName = ‘hello.Application’

The application plugin imports tasks for making this project an
executable file. The mainClassName attribute allows us to configure which
class should be the main executable class.
For package management, we use the dependencies attribute, as follows:

1. repositories {
2. mavenCentral()
3. }
4.
5. dependencies {
6. implementation “com.google.guava:guava:19.0”
7. testImplementation “junit:junit:4.12”
8. }

In the example, we import the guava JAR version 19.0 from the
com.google.guava package. We also import the JAR for Junit, a
framework for unit tests, but only for test classes.
Lastly, the repositories attribute indicates which package repository to
use. In this case, we rely on Maven’s central repository (we have included
the URL in the references section). Potentially, we can deploy a private
repository to host our libraries and use the repositories attribute to point
this project to the private repository.
Having created these two files Application.java and build.gradle, the
compilation is simplified to execute the following command from the root
of the project:

1. gradle build

This command will link dependencies and compile Application.java (and
all other Java classes, if we had more). Variations of the command also
allow us to package everything in a JAR.
We can use the following command to execute Application.java directly:

1. gradle run

The output should look like this:
% gradle run

> Task :run

cheese

tomato sauce

sourdough

BUILD SUCCESSFUL in 469ms

2 actionable tasks: 2 executed

Using Gradle, we have automated the most common tasks for this Java
project.
Maven is another popular automation tool. It follows similar patterns to
Gradle, except that Maven relies on XML files for configuration. We have
included a link to Maven’s official tutorial in the References section.
Automation tools may not be considered frameworks by some people, but
they are part of the toolset most proficient developers are expected to know.
These tools abstract out the linking, compilation, and package processes
under a simple API that simplifies the whole process for developers.

Native package management
Some code languages are integrated with standard ways to import external
dependencies into the project. For instance, Rust uses Cargo to configure
dependencies, configure the compilation process, and add metadata to the
project. A cargo.toml file looks like this:

1. [package]
2. name = “hello_world”
3. version = “0.1.0”
4. edition = “2018”
5.

6. [dependencies]
7. time = “0.1.12”

NodeJS is also shipped with a package manager, NPM. In Chapter 2, The
Client-Server Architecture, for the example of a web server using the
Express framework, we generated the following package.json file:

1. {
2. “name”: “express-server-example”,
3. “version”: “1.0.0”,
4. “description”: “”,
5. “main”: “server.js”,
6. “scripts”: {
7. “start”: “node server.js”
8. },
9. “author”: “”,

10. “license”: “ISC”,
11. “dependencies”: {
12. “express”: “^4.17.1”
13. }
14. }

NodeJS may not require compilation, but we still can use package.json to
define a list of installed dependencies and multiple ”scripts” that we can use
to perform actions like starting the server or pre-processing static resources.
Whether the automation tool is shipped with the code language’s compiler
or not, we can see that all these tools share some attributes:

A section where we can configure a set of scripts to execute actions
like compiling source code, packaging the project, or executing an
application.
A section to define a list of dependencies this project uses. For each of
these dependencies has to be explicitly detailed the dependency
version and a namespace to avoid collisions between dependencies.

Another notable mention of a native package manager is Python’s pip,
which allows Python developers to install external dependencies or libraries
in their development environments.

Handing web requests (e.g. Spring MVC, Django)
We have already discussed the idea behind using frameworks to support
HTTP-based applications. We have seen how the Express framework allows
developers to create fully working back-end code for web applications with
just a few lines of code.
Here, we will discuss two other common examples of frameworks for
HTTP-based applications, along with a classic pattern: The Model-View-
Controller (MVC) pattern. The two frameworks to discuss are Java’s
Spring MVC and Python’s Django.

How frameworks are born: The use of the Spring framework
One of the most well-known frameworks in the Java ecosystem is Spring.
Created in 2003, Spring was a response to the complexity of the Java
Enterprise specifications. Frameworks like Spring (and Struts before it)
offered alternatives to the challenge of building enterprise apps in a more
straightforward and open-source way. What started as a single framework
later became an umbrella of different projects, focusing on individual
concerns for building applications using JVM-based languages.
Spring operates in central patterns like Inversion of control (IoC) and
dependency injection. However, each Spring project implements some
domain-specific patterns.

Note search term: Inversion of control (IoC)
IoC is a design pattern based on delegating the creation of class
instances to the framework. Developers create configuration files that
the framework then uses to create instances of the managed services.
Dependency injection, which we used in Chapter 3, “Designing APIs”
to inject different implementation types for the same interface, is one
type of IoC. Using the dependency injection pattern, we build classes
that receive a reference to their external dependencies through a

constructor or a getter. The framework has the job of creating the
instances of the dependencies and injecting them into the other classes
that need them.

Spring’s evolution led to an offer of a diverse set of tools to build cloud-
based applications: Spring Boot, Spring Security, and Spring Data, among
other projects.

About MVC
One of the most popular parts of Spring was Spring MVC. Spring MVC
allowed developers to build “fat” web applications (server-side applications
that included a user interface) by only implementing some specific APIs
provided by the framework.
The Model-View-Controller (MVC) design pattern is not Spring-specific.
It consists of organizing applications (mostly web-based) to encourage
separation of concerns. This clean separation was a response to the
complexity introduced by web applications where business logic would be
mixed with data fetching and presentation logic (like in the PHP example
we saw in Chapter 2, “The Client-Server Architecture”). Each layer of the
MVC pattern has its own goal, as shown in Figure 8.3:

Figure 8.3: Basic flow of the MVC design pattern

The concepts of Model, View and Controller have definitions that
sometimes vary slightly from developer to developer. However, the
following definitions are generally accepted:

Model: The model layer groups all data definitions. In Object-
Oriented Programming, models are the classes or “entities” in the
application: “Order”, “Ingredient” and so on.
View: The view layer collects all files related to the user interface. A
typical pattern used in the view layer is using templates, which are
predefined views with placeholders used to present the dynamic data.
All code related to presentation concerns such as templates,
JavaScript, CSS and other static resources is defined in separate files.
A well-known heuristic is that the view layer should not contain
business logic.
Controller: This is the glue between the model layer and the view
layer. The controller defines all user interactions (like HTTP requests),
fetches the data the request needs from the data definitions in the
Model layer, and then picks the correct template from the View layer,
filling it with the fetched data.

By separating the presentation logic (the code required to render and
present the application’s user interface) and the business logic, the MVC
pattern allows front-end developers to work in parallel on the same project
as back-end developers, without getting source code conflicts.

Dependency Injection
Before moving into specific uses of Spring, we must describe how its
dependency injection capabilities work.
At a first sight of these examples, it might feel like we are over
complicating things; and if our application consists of only one service, this
feeling may reflect reality. However, these patterns prevent rework as
applications grow: We can rewrite services in isolation by creating new
implementations without refactoring other services that depend on them.
Teams can work in parallel to write new services without affecting exciting
implementations.
We discussed dependency injection when we talked about using interfaces
in Chapter 3, Designing APIs. Instead of having a class create instances of
its dependencies, an external actor (a factory or a container) creates the
dependency instance and passes it to all the classes needing it. In many
cases, the injection is done through the class constructor:

1. class ReportService {
2. private PrintService printService;
3.
4. public ReportService(PrintService service) {
5. this.service = service;
6. }
7.
8. // …
9. }

10.
11. interface PrintService {
12. void printDocument(Document doc);
13. }
14.
15. class PrintServiceImpl implements PrintService {
16. @Override
17. void printDocument(Document doc) {
18. // create a concrete implementation
19. }
20. }

As discussed earlier, we choose to use instances when we may have
different implementations for the same services. In this example, we may
want to use an implementation for PrintService, which is stubbed for
testing.
A typical pattern used for dependency injection is the factory pattern,
where specialized classes called “factories” create the instances for each
class:

1. class PrintServiceFactory {
2. PrintService createInstance() {
3. return new PrintServiceImpl();

4. }
5. }
6.
7.
8. class ReportServiceFactory {
9. ReportService createInstance(PrintServiceFactory

printServiceFactory) {

10. PrintService printService = printServiceFactory
11. .getInstance();
12.
13. return new ReportService(printService);
14. }
15. }

The factory pattern encapsulates the process of creating instances of
individual dependencies or services and decouples classes from their
dependencies.
Each factory is in charge of choosing the correct implementation to the
service (for instance, inject the real implementation if this application is
running in the production mode or using the stubbed implementation if we
are executing tests).
Then, the application’s container takes care of wiring everything together,
as follows:

1. class Container {
2. public static void main(String[] args) {
3. PrintServiceFactory printServiceF = new

PrintServiceFactory();

4. ReportServiceFactory reportServiceF = new

ReportServiceFactory();

5.
6. ReportService reportService = reportServiceF
7. .getInstance(printServiceF);

8.
9. // do something with reportService

10. }
11. }

Notice that in this example we are not using Spring. We are building a
custom Continer class to illustrate the way Spring’s dependency injection
works.
Spring offers generic factories and containers that are managed by the
framework (hence the inversion of control). We provide Spring with a
configuration to describe how each dependency and service needs to be set
up, and Spring takes care of wiring everything together.
The configuration we provide to Spring can be written using the following
three different formats:

XML-based configuration
Code-based configuration
Annotation-based configuration

Spring’s XML configuration
Spring’s XML configuration file details what instances or “beans” it should
create. The following is an example of this configuration:

1. <bean id=”printService”

class=”com.example.myapplication.PrintService”/>

2.
3. <bean id=”orderService”

class=”com.example.myapplication.OrderService”>

4. <constructor-arg index=”0” ref=”printService”/>
5. </bean>

Using Spring’s XML configuration requires almost no changes to our
service classes: In the example, we pass an instance of PrintService
through the OrderService constructor.

In Spring, the container is called ApplicationContext. Having provided
the XML configuration file, we can get a fully configured instance of a
dependency through the Application Context:

1. public static void main(String[] args) {
2. ApplicationContext context = new

ClassPathXmlApplicationContext(“spring-config.xml”);

3. OrderService orderService =

context.getBean(OrderService.class);

4.
5. // orderService is ready to be used
6. }

We can see how this makes our lives easier: Spring takes care of
instantiating and wiring all services, just as the Container class was doing
in our example; with Spring we can get rid of the Container class.
The advantage of using XML configuration files was that we can compile
our application once and then change its behavior by changing the XML
files directly; all without having to re-compile and re-package the
application.

Code-based configuration
An alternative (and more popular) option is to use Java annotations to
configure each class. This approach requires us to create a configuration
class similar to the following:

1. @Configuration
2. public class Config {
3.
4. @Bean
5. public PrintService printService() {
6. return new PrintServiceImpl();
7. }
8.
9. @Bean

10. public OrderService engine() {
11. return new OrderSerivce(printService());
12. }
13. }

Again, we can use the Application Context to get instances of the services:

1. public static void main(String[] args) {
2. ApplicationContext context = new

AnnotationConfigApplicationContext(Config.class);

3. OrderService orderService =

context.getBean(OrderService.class);

4. }

Annotation-based configuration
The annotation-based configuration is an extension of the code-based
configuration.
Spring is smart enough that we can give it a package within our project, and
it will scan for any beans that need to be instantiated and wired. The
following configuration class uses the “@ComponentScan” annotation:

1. @Configuration
2. @ComponentScan(“com.example.myapplication”)
3. public class Config { }

Spring will look for classes annotated with @Component (or sub-types of that
same annotation like @Service or @Repository) and will create instances of
them. Then, it will inject dependencies into attributes annotated with
@Autowired or @Inject:

1. @Component
2. class PrintServiceImpl implements PrintService {
3. // …
4. }
5.

6. @Component
7. class ReportService {
8. @Autowired
9. PrintService printService;

10.
11. // …
12. }

Spring’s component scan speeds up development, as now we don’t need to
imperatively configure how each class needs to be instantiated.

Spring MVC
Spring MVC was once the cornerstone of the Spring Framework initiative.
Spring’s use of dependency injection and wide use of conventions makes it
really easy for us to build a fully working web application.
First, we define a model to define the application’s state:

1. package com.example.pizzaplace.model;
2.
3. import java.util.LinkedList;
4. import java.util.List;
5.
6. public class Order {
7. private String orderName;
8. private List<String> ingredients;
9.

10. // add getters and setters
11. // …
12. }

Models are plain Java objects (POJO), but we can extend them using
annotations to map their attributes to database columns. We will discuss this
case in the ORM section of this chapter.

Having defined a model, let us create a view. Spring MVC uses a
templating engine called Thymeleaf, which is a super-set of HTML:

1. <!DOCTYPE HTML>
2. <html xmlns:th=”http://www.thymeleaf.org”>
3. <head>
4. <title>Getting Started: Serving Web Content</title>
5. <meta http-equiv=”Content-Type” content=”text/html;

charset=UTF-8” />

6. </head>
7. <body>
8. <h1 th:text=”’Order Name: ‘ + ${orderName}”></h1>
9.

10. <li th:each=”ingredient: ${ingredients}”

th:text=”${ingredient}”>

11.
12. </body>
13. </html>

Unlike HTML, Thymeleaf’s templates are dynamic: They offer a
placeholder where we can inject data coming from our model. In this
example, the template uses the ”th:each” attribute to iterate over a list of
ingredients, printing them one at a time inside an unordered HTML list. It
also uses ”th:text” to print the name of the order, which is passed through
the “orderName” variable. The template will be compiled into static HTML
before it’s returned to the client.
Finally, the glue that binds the model and the view: The controller:

1. package com.example.pizzaplace.controller;
2.
3. import com.example.pizzaplace.model.Order;
4. import com.example.pizzaplace.service.OrderService;
5.

6. import
org.springframework.beans.factory.annotation.Autowired;

7. import org.springframework.stereotype.Controller;
8. import org.springframework.ui.Model;
9. import org.springframework.web.bind.annotation.GetMapping;

10.
11. @Controller
12. public class OrderController {
13.
14. @Autowired
15. OrderService orderService;
16.
17. @GetMapping(“/order”)
18. public String getOrderHandler(Model model) {
19. Order currentOrder = orderService.getOrder();
20.
21. model.addAttribute(“orderName”,

currentOrder.getOrderName());

22. model.addAttribute(“ingredients”,

currentOrder.getIngredients());

23. return “order”;
24. }
25. }

We use Spring’s annotation @Controller to indicate that this class should
be considered a Spring MVC controller. When the Spring context scans all
classes in the project and finds OrderController, it knows what role it will
play in the application.
We also use the @Autowired annotation to inject the OrderService

dependency into the controller. We will look at the definition of this service
next, but let us finish discussing the controller.

The @GetMapping(“/order”) annotation tells Spring MVC that all GET
requests done to the /order path should be handled by this method.
The getOrderHandler handler function receives an instance of the class
Model. This is the view model that we will use to fill the placeholders in
the view. Using the function model.addAttribute we set values for the
orderName and ingredients variables in the template.
We use the injected service OrderService to fetch a single instance of the
order, which we then use to set the variable values in the view model.
Finally, the definition of the OrderService class consists of one POJO
marked with the @Service annotation:

1. package com.example.pizzaplace.service;
2.
3. import com.example.pizzaplace.model.Order;
4. import org.springframework.stereotype.Service;
5.
6. @Service
7. public class OrderService {
8. public Order getOrder() {
9. Order newOrder = new Order(“Pedro’s order”);

10.
11. newOrder.addIngredient(“Cheese”);
12. newOrder.addIngredient(“Tomato sauce”);
13.
14. return newOrder;
15. }
16. }

Just like with the @Controller annotation, the @Service annotation marks
the OrderService class so, when Spring initializes its context and scans all
classes in the project, it knows that it should create an instance of
OrderService and inject it any other classes which use the @Autowired
class on variables of type OrderService.

In this example, the service hard-codes values for an instance of the Order
class, but in a real-world application, the service would query a database or
call other external services to fetch real data.
We can now run this application using the following two approaches:

Package it into a WAR file and deploy it into an application server like
Tomcat or Glassfish.
Include Spring Boot as a dependency and have it instantiate a server;
similar to how Express works.

We will discuss deploying applications in the next chapter.

Note Spring Webflux
One hard limitation of Spring MVC has been that it operates in
blocking Java’s Servlet operations. This means that each thread that
is created by the server when it receives requests from the clients will
not be released until the response is returned. If a request requires
fetching data from a database or any other external service, the
thread may be blocked for a long time, reducing the server’s capacity
to respond to other requests.
While improvements have been made on the Java side to improve the
Servlet API, Spring has created a new service called Spring WebFlux,
which is fully non-blocking.
Spring WebFlux runs on top of non-blocking servers like Netty or the
latest versions of the Servlet API. Its API is fully functional and
reactive (the framework does not block thread execution, but it
“reacts” to changes like getting a response back from a database).
Spring WebFlux provides reactive support for some databases like
PostgreSQL or MongoDB, and it is currently working on providing
reactive support for more services.
Spring MVC is still suitable for many projects, but Spring is pushing
strongly for development teams to adopt a more reactive style of
programming with WebFlux.

More MVC: Express

In previous examples, we used the NodeJS Express framework to build
REST APIs. In addition to returning JSON objects, this framework also
returns template-based views.
A common templating option for Express is Handlebars, a super-set of
HTML that is similar to Thymeleaf. Handlebards can define placeholders
for dynamic data in an HTML document. For instance, the following
home.hbs file is the view template for this example:

1. <!DOCTYPE html>
2. <html>
3. <head>
4. <meta charset=”utf-8”>
5. <title>Example App</title>
6. </head>
7. <body>
8. <h1>Order name: {{order.orderName}}</h1>
9.

10.
11. {{#each order.ingredients as |ingredient|}}
12. {{ingredient}}
13. {{/each}}
14.
15. </body>
16. </html>

Handlebars will compile that template along with data returned from the
controller, which in this case is defined by the Express method get:

1. import express from ‘express’;
2. import { engine } from ‘express-handlebars’;
3.
4. const app = express();
5.

6. app.engine(‘.hbs’, engine({extname: ‘.hbs’}));
7. app.set(‘view engine’, ‘handlebars’);
8. app.set(‘view engine’, ‘.hbs’);
9. app.set(“views”, “./views”);

10.
11. app.get(‘/’, (req, res) => {
12. res.render(‘home’, {
13. order: {
14. orderName: “Pedro’s order”,
15. ingredients: [“Cheese”, “Tomato sauce”]
16. },
17. layout:false});
18. });
19.
20. const port = 3000
21. app.listen(port, () => console.log(`App listening to port

${port}`));

This is very similar to how Spring MVC operates; we use res.render to
choose the right handlebars template to render, along with the data that
should be used to fill the view’s placeholders.
We can clearly see the shared patterns between both MVC frameworks,
patterns that we can also see in other frameworks like Python’s Django:

A controller that matches the request path and the HTTP method to a
function handler.
Controller handlers that receive request parameters (through a POST
body request or through query parameters) and fetch data using the
model layer.
The controller handler retrieves its assigned view, populates the
template’s dynamic data using the model, producing HTML. That
same HTML is then returned back to the client.

The downfall of MVC
During the glory days of the MVC pattern, most dynamic web-based
applications were server-side rendered. MVC-based applications would
retrieve templates, fill them with data during run-time, and return
dynamically created HTML before returning the server response.
Fast-forward a few years later, and front-end frameworks like Ember,
React, and Angular are introduced. As these tools matured and became
stable enough, more people started to write front-end applications outside
the web server. Suddenly, the MVC framework lost most of its “V” part, as
back-end templates were deprecated in favor of JavaScript-based
components. The “C” part also became suddenly unfit for the task: Since
controllers are the glue that binds models and their views, without views,
there were no more things to glue together.
Nowadays, MVC can be considered an outdated pattern. We are talking
about it here because many applications exist (especially in enterprise
projects) that still rely on this pattern. Also, since it provides a clear
translation of a design pattern into a framework, it is an excellent example
for this section.

Database access with ORMs
Database operations are one of the most ubiquitous tasks for a software
application. As seen in Chapter 4, End-to-end Data Management, for many
years, the most popular modeling format for databases was the relational
model. As OOP became the reigning programming paradigm, an impedance
mismatch between the relational data format and the object-relational model
happened.
Object-relational mapping (ORM) frameworks were born out of the need
to convert relational data into objects and back into relational form again.
This operation is represented in Figure 8.4 as follows:

Figure 8.4: ORM frameworks map data between objects and relational tables

One of the key ideas behind ORMs was to separate concerns: to allow
application developers to operate on objects without worrying about SQL
and allow SQL developers to design databases without worrying about the
data representation in an OOP model.

JPA and Hibernate
ORMs became especially popular in the enterprise world. This popularity
even led languages like Java to implement an official API for ORM
frameworks to implement. In Java, there is JPA (Jakarta Persistence API or,
as it was formerly known, Java Persistence API), and the most popular
vendor who provided an implementation for JPA was Hibernate.

Note Java and APIs
In an effort to maintain itself independent of implementations
provided by specific companies or vendors, the Java specification
language provided a set of official APIs: Interfaces that any vendor
can implement to provide specific functionality to the language
without having to tie the official codebase to that vendor.
The most common example of these APIs is the Jakarta Persistence
API (JPA) or the Java Naming and Directory Interface (JNDI).
Besides Hibernate, other vendors like Spring Data and Oracle’s
TopLink provide JPA implementations.

To achieve its goals, ORMs define an idiom where developers can create
configurations to indicate to the ORM how the data should be serialized
back and forth. The following XML document is an example of
persistence.xml, the configuration file used by JPA (and by extension by
Hibernate) to configure the mapping between a relational database and Java
classes:

1. <?xml version=”1.0” encoding=”UTF-8”?>
2. <persistence

xmlns=”http://xmlns.jcp.org/xml/ns/persistence”

version=”2.1”>

3. <persistence-unit name=”jpa_provider” transaction-

type=”RESOURCE_LOCAL”>

4. <provider>org.hibernate.jpa.HibernatePersistencePro
vider</provider>

5. <class>hibernate.example.model.Order</class>
6. <class>hibernate.example.model.Ingredient</class>
7.
8. <properties>
9. <property name=”hibernate.connection.url”

value=”jdbc:postgresql://localhost:5432/postgres”/>

10. <property

name=”hibernate.connection.driver_class”

value=”org.postgresql.Driver”/>

11. <property name=”hibernate.connection.username”
value=”postgres”/>

12. <property name=”hibernate.connection.password”
value=”mysecretpassword”/>

13. <property name=”hibernate.dialect”

value=”org.hibernate.dialect.PostgreSQLDialect”/>

14. <property name=”hibernate.show_sql” value =
“true” />

15. </properties>
16. </persistence-unit>
17. </persistence>

This configuration file contains mapping and database connection details:

The location of the database (PostgreSQL, in this example) is written
in the format of a JDBC connection string.
A username and password are used to access the database.
The dialect: A class that contains the mappings between Java classes
and database types, which allows Hibernate to generate SQL
optimized for a kind of relational database (again, PostgreSQL in this
example).

Notice these two lines:

1. <class>hibernate.example.model.Order</class>
2. <class>hibernate.example.model.Ingredient</class>

Here, we are indicating to Hibernate the classes it should use for mapping
database tables. This pattern is similar to mapping beans in Spring’s XML
configuration classes. Let us take a look at these classes.

Mapping tables to entities
The following SQL script describes the two hypothetical relational tables
we have seen earlier in this book: The model orders (which is defined as
OrdersTbl) to model a restaurant order and food items, which is defined as
FoodItemsTbl to model specific food items included in the order, like a
pizza:

1. create table orders_app.OrdersTbl (
2. order_id serial primary key,
3. order_name text
4.);
5.
6. create table orders_app.FoodItemsTbl (
7. item_id serial primary key,
8. item_name text,
9. order_id_fk int references orders_app.OrdersTbl

10.);

Figure 8.5 displays the Entity-Relationship diagram for the preceding SQL
tables:

Figure 8.5: Entity-relation model for the tables OrdersTbl and FoodItemsTbl

As seen in Figure 8.5, the FoodItemsTbl table is related to the OrdersTbl
through the foreign key order_id_fk. This relationship is a one-to-many
relationship: One order can be related to multiple food items, and a food
item is only assigned to one order.
In the JPA model, mapping database tables into classes is done through
annotations. Classes that are annotated with the JPA interface are called
entities:

1. package hibernate.example.model;
2.
3. import javax.persistence.CascadeType;
4. import javax.persistence.Column;
5. import javax.persistence.Entity;
6. import javax.persistence.GeneratedValue;
7. import javax.persistence.GenerationType;
8. import javax.persistence.Id;
9. import javax.persistence.OneToMany;

10. import javax.persistence.SequenceGenerator;
11. import javax.persistence.Table;
12.
13. import java.util.List;
14.

15. @Entity // mark this class as an entity
16. @Table(name = “OrdersTbl”, schema=”orders_app”)
17. public class Order {
18.
19. @Id
20. @GeneratedValue(
21. generator = “order_id_seq”,
22. strategy = GenerationType.SEQUENCE
23.)
24. @SequenceGenerator(
25. name = “order_id_seq”,
26. sequenceName = “orders_app.orderstbl_order_id_seq”
27.)
28. @Column(name = “order_id”)
29. int id;
30.
31. @Column(name = “order_name”)
32. String name;
33.
34. @OneToMany(cascade = CascadeType.ALL, mappedBy = “id”)
35. List<FoodItem> ingredients;
36.
37. // regular getters and setters for each attribute
38. // …
39. }

We annotate the class with @Entity to allow JPA to know that this is a
database entity and that Hibernate should manage it.
We map database columns with class attributes using the @Column

annotation. For instance, we map the class attribute name to the table

column order_name. If both the column and the attribute have the same
name, we can even skip the name attribute in the @Column annotation.
The special annotation @Id lets JPA know that the attribute is a primary ID.
The @GeneratedValue and @SequenceGenerator annotations allowed
hibernate to know that the auto-generated values for these keys should be
based on PostgreSQL’s sequences (which are generated automatically by
the database when we use the SQL data type serial to define the primary
key). We can use these PostgreSQL-specific terms thanks to the dialect
configured in persistence.xml.
The modeling mismatch happens when we need to model relationships.
While the OrderTbl table does not have any reference to the FoodItemsTbl,
the Order class requires an attribute to refer to the list of food items related
to that specific order using the @OneToMany annotation.
In OOP, relationships are modeled as in document-based models: Using
nested objects and models. To expressively model the relationship of order
to all its food items, the N:1 relationship has to be explicitly configured.
The FoodItem class follows a similar pattern but uses the opposite type of
relationship to indicate its link to the Order entity:

1. package hibernate.example.model;
2.
3. import javax.persistence.Column;
4. import javax.persistence.Entity;
5. import javax.persistence.FetchType;
6. import javax.persistence.GeneratedValue;
7. import javax.persistence.GenerationType;
8. import javax.persistence.Id;
9. import javax.persistence.JoinColumn;

10. import javax.persistence.ManyToOne;
11. import javax.persistence.SequenceGenerator;
12. import javax.persistence.Table;
13.
14. @Entity

15. @Table(name = “FoodItemsTbl”, schema=”orders_app”)
16. public class FoodItem {
17. @Id
18. @GeneratedValue(generator = “fooditemstbl_id_seq”,

strategy = GenerationType.SEQUENCE)

19. @SequenceGenerator(name = “fooditemstbl_id_seq”,

sequenceName = “orders_app.fooditemstbl_item_id_seq”)

20. @Column(name = “item_id”)
21. int id;
22.
23. @Column(name = “item_name”)
24. String name;
25.
26. @ManyToOne(fetch = FetchType.EAGER)
27. @JoinColumn(name = “order_id_fk”)
28. Order assignedOrder;
29.
30. //more regular getters and setters
31. //…
32. }

We use the same annotations to configure the mapping of the primary key
and columns into the class attributes as we did with the Order entity. For the
relationship, however, we use @ManyToOne to indicate that FoodItem has an
N:1 relationship with Orders.
The model mismatch gets even more complicated when we think about
querying data in multiple scenarios:

Query the FoodItemTbl table and fetch the orders for each FoodItem.
Query the FoodItemTbl table without fetching the order table.

If we query the database using this entity, what behavior of these two will
we get?

We can configure the fetching behavior with the fetch =

FetchType.EAGER property:

Eager means that every time we fetch the FoodItem entities, we will
also query OrderTbl to fetch their corresponding orders.
Lazy will only query the OrderTbl until the order is actually retrieved
from the entity, thus reducing the amount of data that needs to be
fetched if the order is never really accessed.

Notice that, annotations apart, there is nothing special about these classes.
They are plain Java objects that are just annotated with the JPA-specific
API. This means that these entities can extend other classes, implement
interfaces, and so on.

Inserting and querying data
ORM frameworks provide utility classes to perform data operations on the
database. In the case of JPA, the EntityManager class provides an API to
persist data contained in objects or to query data using the Hibernate
dialect we configured in persistence.xml:

1. // create an entity manager using the configuration in

persistence.xml

2. EntityManagerFactory emf = Persistence
3. .createEntityManagerFactory(“jpa_provider”);
4. EntityManager em = emf.createEntityManager();

We use the persistence unit jpa_provider -which is defined in
persistence.xml to create an instance of the EntityManager. The entity
manager will be configured with all the attributes defined in the XML file.
We can create new records in the database using the EntityManager
instance:

1. EntityTransaction userTransaction = em.getTransaction();
2.
3. // begin a SQL transaction
4. userTransaction.begin();
5.

6. // Create instances of Order and FoodItem
7. Order newOrder = new Order();
8. newOrder.setName(“Pedro’s order”);
9. FoodItem item = new FoodItem();

10. item.setName(“Lasagna”);
11.
12. // Initialize the relationship between both entities
13. List<FoodItem> items = new ArrayList<>();
14. items.add(item);
15. newOrder.setIngredients(items);
16. item.setAssignedOrder(newOrder);
17.
18. // save both entities: the food item is nested in the order

entity

19. em.persist(newOrder);
20.
21. // commit the transaction to the database
22. userTransaction.commit();
23.
24. // close the entity manager
25. em.close();
26. emf.close();

The following are the highlights of this code snippet:

We start an SQL transaction. This is done in cases where we need to
do multiple database operations in one single action. For this example,
a transaction may not be required, but we use it to illustrate
JPA/Hibernate’s API in a better way.
We create instances of the Order and FoodItem’ classes and xsave
them using the persist method of EntityManager. The entities are
marked as persisted by Hibernate, but since we are running them
inside a transaction, they are not yet sent to the database.

We execute the transaction’s commit() method for data to propagate
the persisted entities to the database.

After executing this code, we should be able to see new records stored
directly in the PostgreSQL database.
Since we set the hibernate.show_sql attribute to true in
persistence.xml, the application’s console should show the dynamically
generated SQL INSERT statements:
Hibernate: select nextval

(‘orders_app.orderstbl_order_id_seq’)

Hibernate: select nextval

(‘orders_app.fooditemstbl_item_id_seq’)

Hibernate: insert into orders_app.OrdersTbl (order_name,

order_id) values (?, ?)

Hibernate: insert into orders_app.FoodItemsTbl (order_id_fk,

item_name, item_id) values (?, ?, ?)

Notice that because we configure the entities to use sequences to generate
primary key values, Hibernate automatically queries the database to get the
latest value in the sequence and generate the next value.
Next, let us look at the code to query the database:

1. // query and print all food items
2. List<FoodItem> ingredientQR = em
3. .createQuery(“select C from FoodItem C»,

FoodItem.class)

4. .getResultList();
5.
6. ingredientQR.stream().forEach(System.out::println);
7.
8. em.close();
9. emf.close();

We use the createQuery method of EntityManager to query the database.
This method receives the following two parameters:

A query that is written in the dialect configured in the
persistence.xml attribute hibernate.dialect. For this example, we
use the Java entity name instead of the actual SQL table name
FoodItemTbl to fetch the list of food item records.
The entity class that will be used to map the query’s response. In this
case, we are using the FoodItem class to deserialize the response.

The result of the query is a Java List of the entity FoodItem. Then, we print
the list contents using Java’s stream method forEach.

More ORMs: Python’s Django ORM
Python’s Django uses an ORM pattern to fetch data from the database into
its models; those same models that live in the model layer of its MVC
structure.
The following is an example of a Django model. If we look closely at it, we
will recognize the same patterns we described for JPA:

1. from django.db import models
2.
3. class Order(models.Model):
4. id = models.IntegerField(primary_key=True)
5. name = models.TextField()
6.
7. class Meta:
8. db_table = “OrderTbl”
9.

10. class FoodItem(models.Model):
11. id = models.IntegerField(primary_key=True)
12. name = models.TextField()
13. assigned_order = models.ForeignKey(Order,

on_delete=models.CASCADE)

14.
15. class Meta:

16. db_table = “FoodItemTbl”

Instead of annotations, this example uses Django’s IntegerField,
TextField, and ForeignKey functions to map the database columns into
this model’s attributes.
To persist an instance of Order, we can use the “save” method provided by
models. Model, the parent class our entities extend:

1. order = Order(name=”Pedro’s order”)
2. order.save()
3.
4. food_item = FoodItem(name=”Pizza”, assigned_order=order)
5. food_item.save()

Contrasting JPA with Django’s ORM allows one to find the patterns shared
by both and to distinguish the characteristics that define ORMs.

The downsides of ORM
One disadvantage of ORMs is that they add an extra abstraction layer to the
communication between the database and the application. The ORM
framework works so hard to hide the SQL details from the Java developers
that the mapping sometimes feels like magic. This abstraction can be
problematic when the data access operations do not behave as expected.
The abuse of abstraction layers forces developers to build a mental model
that is neither OOP nor SQL. The use of Hibernate dialects is the perfect
example of the extra knowledge developers need to acquire to use ORMs,
knowledge which would not be necessary if we manually mapped the
relational tables.
Another complication of ORMS is the generation of dynamic SQL queries.
While Hibernate and other ORMs will try to optimize the queries they
generate, they are no match for the highly-performant queries an
experienced developer can write.

Choosing a framework

Some problems may have multiple solutions. Web client development has
many JavaScript frameworks like React, Angular, Vue, and Ember, among
other tools. How do we choose which frameworks to learn and use?
In Chapter 1, Building Multi-User Apps, we discussed how building
applications without having a problem to solve first could lead to failure.
Similarly, choosing a framework without thinking about the problems they
solve can lead to wasted effort. Finding the solution to a problem that does
not exist is hard, if not impossible.
Always guided by our requirements, mainly non-functional requirements,
we should shop around and see what existing frameworks offer. All of them
will have trade-offs, and we should find the right trade-offs we can live with
as we build our project.
A framework may be powerful and easy, but it may only support specific
platforms, code languages, or patterns. Do these limitations work well in
our application? For instance, a framework that only supports web clients
may be good enough for us if we don’t plan to build native applications.
The more minor, more straightforward, and more focused the framework is,
the easier it will be to adopt it.
Ideally, we should build our applications without using any frameworks. We
should only consider frameworks as we find problems that are too hard or
take too long to fix ourselves (like building a web server!).
This bottom-up approach (start with no framework and add one as you
need) will guarantee that we only add the external dependencies we need.
As we gain more experience designing systems, we will identify the cases
where we need a framework before our project begins.

The impact of community
One aspect to consider when adopting a framework is how well the
framework is maintained. Many frameworks are open-source, and they need
to be maintained by their community members. Whether their bugs and
weaknesses are correctly addressed depends on how active their
communities are.
Frameworks that are often maintained and updated have benefits:

It is easier to find bugs when many eyes point to the framework, not
just ours.
Bug remediation is also faster when an open-source tool has an active
community.
New features will be added as needed, increasing the robustness of
these tools.

An active community around a framework often translates to well-
documented features; documentation is critical when our team tries to learn
and use a new framework. A poorly documented framework will lead to a
steep learning curve or even project failure.
However, as we will explore in the following section, sometimes the right
question is not which framework to use but if we should use a framework at
all.

When not to use frameworks
For all their good, frameworks are not always the right solution. As
mentioned in the previous section, there is no good reason to find a solution
if we have no problem to solve.
Frameworks can be as small as one or two libraries or as large and complex
as the specification of many code languages themselves. Varying
complexity in frameworks means that in addition to knowing the API for
the code language they are using in their project, developers also need to
understand the framework’s inner workings and API.
Some frameworks implement their architectures on specific patterns,
meaning the developer needs to be proficient in these concepts to take
advantage of the framework’s benefits fully.

Learning the framework instead of using the
basics
A current issue in the JavaScript community is that new developers are
learning how to use frameworks before learning how the underlying
technology (in this case, plain JavaScript) works.

Inexperienced developers try to ramp up their knowledge as fast as
possible. Often, they will skip the lessons on building things without
frameworks and jump directly into learning the framework’s API.
When the use of a framework is prevalent, like in the case of Facebook’s
React or Java’s Spring, these same inexperienced users will often confuse
what is part of the framework and what is part of the language specification.

Note Javascript frameworks provide such good examples for this
section because it is ubiquitous for people to over-complicate simple
projects by building web applications using frameworks.
For instance, primarily static web applications would be easier to
implement with pure Javascript. However, as React is popular among
web developers, people will blindly include it in their projects, often
resulting in increased effort and delayed deadlines if few, if any,
advantages.
The simpler our codebase is, the easier and cheaper it is to maintain.

At the beginning of our careers as software developers, it is better to learn
how to do everything with no frameworks at all. That knowledge will
exponentially speed up the learning process of any framework’s specifics
(not just Spring or React or the popular framework in turn) later in the
future.

Adding debugging complexity
Using a framework when it’s not needed increases the overall complexity of
most applications. For instance, if our application’s database only has one
small table, and the query used to fetch data is straightforward, adopting an
ORM framework like Hibernate may be overkill.
By adopting a framework, developers not only need to debug issues coming
from the code they build but also from the code abstracted by the
framework itself.
Not all projects benefit from the use of frameworks. When a project is small
or simple enough, introducing a framework will result in negative impacts,
like unnecessarily increasing the effort required to build the applic.

Also, frameworks will ship with features that the application does not need
and will not use. For instance, a framework that is focused on providing a
solution to highly distributed systems will not be a good fit for an
application that only uses one or two servers; it ships with many features we
do not need and may require extra configuration that could increase the cost
of the project.

Zero-cost abstractions
From the point of view of software complexity and performance,
frameworks are not free: Even if we do not see their code implementation,
code abstractions introduced by frameworks use memory and affect space
and time complexity.
The abstraction cost of many frameworks is not large enough to cause a
considerable impact on most applications’ performance. Still, some specific
cases like those of low-level applications need the best performance they
can get, and the cost of framework abstractions matters.
Some low-level code languages like C++ or Rust use the “zero-cost
abstractions” pattern. Code abstractions following this pattern do not
perform worse than implementing the same code without the abstractions.
In simpler terms, these are abstractions that have no impact on performance.
Considering the impact introduced by frameworks, whether it has a
significant impact or not, is one of those skills that developers acquire with
experience.

Conclusion
Frameworks and patterns provide correct and reusable solutions to common
problems and challenges. Frameworks abstract the essential elements of the
problem and provide reusable components that developers can extend to
build fully personalized applications.
Frameworks help developers concentrate on business requirements. By
using a mix of configuration and conventions, frameworks reduce the
amount of code needed to build non-functional requirements or implement
helpful design patterns.

Frameworks also promote collaborative work by establishing well-
delimited conventions and modular code. For instance, large teams can
focus on the layer or component they need to work on without modifying
code in other layers.
Frameworks come at a cost, though. They require developers to learn the
underlying patterns used by the framework and the API used to configure it.
Frameworks increase the knowledge developers need before they can start
working on a project, increasing hiring and training costs.
Developers who are just starting their careers should focus on learning the
underlying technology before learning the framework’s API. If we focus on
the basics first, we will exponentially accelerate the learning of any
framework, not just those popular today, like React of Spring.
Having seen that there are tools that help us build applications faster, in the
next chapter, we will focus on tools and patterns to deploy applications and
get them ready to be used.

References
Gang of four design patterns: https://www.gofpatterns.com/
Gradle installation guide: https://gradle.org/install/
Central Maven repository: https://repo1.maven.org/maven2/
“Maven in 5 minutes”: https://maven.apache.org/guides/getting-
started/maven-in-five-minutes.html
“Inversion of Control Containers and the Dependency Injection
pattern” by Martin Fowler:
https://www.martinfowler.com/articles/injection.html
Spring’s dependency injection and other core technologies:
https://docs.spring.io/spring-
framework/docs/current/reference/html/core.html
Spring Webflux: https://docs.spring.io/spring-
framework/docs/current/reference/html/web-reactive.html
Java’s JPA: https://jakarta.ee/specifications/persistence/3.0/
Hibernate’s ORM documentation: https://hibernate.org/orm/

https://www.gofpatterns.com/
https://gradle.org/install/
https://repo1.maven.org/maven2/
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://www.martinfowler.com/articles/injection.html
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html
https://docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html
https://jakarta.ee/specifications/persistence/3.0/
https://hibernate.org/orm/

Zero cost abstractions in Rust’s context: https://rust-
lang.github.io/async-book/01_getting_started/02_why_async.html

https://rust-lang.github.io/async-book/01_getting_started/02_why_async.html

O

CHAPTER 9
Deploying Applications

nce we have built our application, how do we publish it to make it
available to our users? How can we guarantee our application will run

smoothly on the server as it does on our development computer?
This chapter reviews the process an application has to go through from the
source code to the excellent app our users will love. We will also examine
how Virtual Machines (VMs) and containers help make our application
environments reproducible, which will allow us to configure our app
environment once and run it almost everywhere.

Structure
In this chapter, we will learn the following topics:

Defining a robust deployment process: CI/CD
Creating reproducible environments
Version control
Virtual Machines
Containers (A.k.a Docker)
Working with stateless containers
Use case: Creating a reproducible deployment environment for the
Pizza Place app using Git and Docker

Objectives
In this chapter, we will discuss all things related to the deployment of
software applications. By the end of this chapter, we should have a good
understanding of the steps of the CI/CD progress, starting from changes
made to the codebase repository all the way to having a live instance of the
application running in production.

Finally, we will understand how to track changes made to our application’s
source code, and how to leverage containers to create reproducible and
predictable application environments.
The main goal of this chapter is to understand how we can deploy back-end
applications to a production environment and what our role as back-end
developers is within this process.

Defining a robust deployment process: CI/CD
The software development lifecycle has evolved during the past few years.
Years ago, we used to deliver software every few months or even years.
Now are expected to deliver code in intervals as short as every few hours.
As discussed previously in this book, we would like to deploy our
application every time we introduce a new feature or code fix. This demand
change has led to the creation of CI/CD pipelines.
Continuous Integration and Continuous Deployment (CI/CD) is the
process of building, testing, and deploying an application as a response to
an event like a code commit or a developer manually requesting a re-
deployment.
The CI/CD term is composed of two different concepts:

Continuous Integration: The application is repeatedly compiled,
tested, and validated end to end. Continuous Integration increases the
confidence in the application’s quality: The more often we integrate,
the faster we can find and fix possible defects and failures.
Continuous Deployment: Deploy the application often. Reducing the
number of changes between one deployment and the next makes it
easier to identify problems and the code changes that caused them.
Also, new features get to users faster, providing more accurate and
current feedback.

More than a recipe, CI/CD is a goal of an ideal delivery process that
maximizes quality and minimizes defects.

Before CI/CD

Historically, the deployment of software applications has been a largely
manual process, from people distributing their applications on floppy disks
or CDs to developers publishing software to public repositories where
people would download and install them.
As web applications gained popularity, we stopped distributing binary files.
Now, developers had to upload their files to a web server using protocols
like File Transfer Protocol (FTP). If they needed to release a new version,
developers had to manually replace all files to be updated. Figure 9.1
illustrates this manual process:

Figure 9.1: Developers use to update their applications by manually updating files through FTP

Deployment was slow and error-prone: Developers could miss replacing
some files, or they could accidentally and unintendedly modify the server’s
files, causing errors that required developers to re-deploy the whole
application, sometimes multiple times in a single deployment.
With the rise of web-based enterprise applications, web servers became
application servers: Large servers that not only hosted static files like
HTML, CSS, JavaScript, or even Perl or PHP scripts. Now, servers could
run code built using programming languages like Java or C+.
In the Java world, the standard deployment units were WAR or EAR files.
These “tick” packages contain the application’s compiled source code and
files like images, audio, video files, or other resources needed at runtime.
These packages forced developers to manually compile and package their
software projects directly in their development machines, take the compiled

package file, and manually deploy it to the application server. Again, we
illustrate this process in Figure 9.2:

Figure 9.2: WAR or EAR files are deployed to the application server

Since multiple projects were deployed to the same server, application
servers became large and challenging to maintain, full of complex
configuration files that we had to update through a user interface manually.
The complexity of the application servers resulted in long deployment times
and overall instability.
A direct result of this cumbersome deployment process was that developers
were afraid of deploying and would delay releasing as much as possible.
The problem with infrequent deployments is that the more changes we
include in a deployment, the higher the probability of the deployment failing
or introducing errors. This challenge is addressed by the ‘CI’ part of
‘CI/CD’. Continuously integrating small changes makes deployments more
manageable, as there is less room for errors.

A step forward: Deployment scripts
Some developers tried to improve the deployment process through
automation scripts. These scripts would build the project, execute the
automated test suite, package the application, and copy the package into the
application’s server’s internal file system. These scripts were an
improvement, but the process was still difficult to debug when something
went wrong.
This setup of “one developer triggering the deployment script manually”
caused many bottlenecks in the deployment process. Every day, each

developer in a team would add changes to the codebase. These changes
would add up, and when it was time for deploying, all code changes would
have to pass tests and validations. It only took one of these changes not to
pass a test to stop the deployment for the whole team.
The developers in charge of deploying became a bottleneck themselves.
Every bad code change that broke a deployment had to be managed by the
developer running the deployment script, even if that person had no context
about the change. In general, deployment scripts lacked visibility for other
team members.
To increase the visibility and performance of the deployment process, many
teams introduced special servers that would be in charge of executing the
deployment process. However, even having a central process still required
some amount of human intervention to initiate new deployments. Teams
would schedule frequent deployments (for example, daily, at the end of the
day), but ad-hoc manual deployments would still be required if critical
changes needed to be deployed.
Now, take all these headaches and multiply them as teams introduce new
environments for development and test, each requiring independent
deployments. All these challenges led to the evolution of CI/CD pipelines.

The advantages of a CI/CD pipeline
CI/CD is reactive, which makes it different from previous automated
deployment approaches.
Instead of triggering a deployment at an arbitrary time, CI/CD pipelines get
triggered when code changes are introduced to the codebase. The pipeline
reacts to code changes by automatically compiling, testing, packaging, and
deploying the project, all without direct human intervention. Furthermore, if
any step fails, the pipeline stops and notifies the developer who owns the
change that caused the problem.
The overall CI/CD process is described in Figure 9.3:

Figure 9.3: High-level view of the CI/CD process, starting

from a change to the codebase and ending in the application’s

deployment

As the team now shares the process, no single developer needs to diagnose
all broken deployments. Each team member can own their changes and take
the lead to fix the deployment if something goes wrong.
The deployment process with CI/CD becomes asynchronous. Since each
code change triggers a separate deployment, then no single bad change can
break the deployment for other developers. Only the developer who
introduced the code change will be blocked until someone fixes the issue
(or the developer discards the code change).
The main advantage of the CI/CD process is that it increases the confidence
in the codebase. We know that each change in the codebase is correct
because it passed each test and validation before being merged and
deployed.

Creating reproducible environments
Whether the deployment is triggered manually or as a response to code
changes, one significant bottleneck in the deployment process is the lack of
isolation in the validation and deployment process. To illustrate this issue,
let us take a look at an example.
Imagine we begin working on a new project that uses a library built with
Python 3. The version currently installed in the CI/CD server is Python 2,

so we upgrade the production server to Python v3. Then, we discovered that
another team was still maintaining a Python 2 application, and our Python
version update broke their deployment process.
In this example, there are workarounds: For instance, we can create virtual
environments or use a tool like Anaconda. However, we would still need to
be careful not to break any other deployed applications in the server when
changing our team’s application environment. The lack of isolation
increases the complexity of this task.

Moving out of shared environments
In traditional applications servers, applications rarely ran in isolation:
Physical servers had multiple servers installed, each with its own set of
applications. For instance, a server could host a WebSphere Application
Server for their Java enterprise applications and an Apache server for their
static websites. Application servers contained multiple applications,
including internal and external facing web applications.
In many cases, one application would fail due to other applications or
servers’ actions, like any changes to shared resources like configuration
files. Debugging these problems is difficult, as it would require developers
to debug them directly in the production server or try to recreate the whole
server in a development machine.
Every new server is configured with clean settings. Servers are configured
with optimal settings, and the server operates efficiently. Then, as time goes
by, the state within a server changes as its applications receive and
generate data, possibly due to user interactions. After a while, a server
shared by many applications will get in such a messy state that it starts to
behave erratically. All this randomness led to multiple issues:

Applications running out of memory unexpectedly.
Race conditions between two separate applications lead to errors
impossible to replicate.
Code that was working in a developer’s machine does not work on the
server.

The solution to these issues is isolated and reproducible environments. Each
of these environments is specifically created for the application they need to

host, and they enforce a hard separation from other environments.

Advantages of isolated and reproducible environments
Isolated and deterministic environments have many benefits for software
developers and their projects:

We can upgrade an application’s dependencies (libraries,
dependencies, compilers, language specifications) without having to
modify other applications’ environments. In the Python application
example, each application can use the Python version they need
without conflicting with each other.
Build, test, and deployment becomes deterministic processes. If an
application’s state gets messy, it only affects one application. Plus, we
can create a new and clean environment instance without affecting
other applications.

Creating reproducible environments can be achieved by using a set of tools
that enforce these constraints.
There exist multiple tools that allow us to build creating isolated and
reproducible environments. Reproducibility can be achieved through
version control, and isolation through the use of Virtual Machines or
containers.

Version control
We cannot create reproducible environments if our source code itself is not
reproducible.
From the first day of any project, the source code will change constantly.
We build new features, fix bugs, introduce new bugs, and create more bug
fixes. With so many changes, we must be confident that the code is correct.
Code changes generate value for our application but can also subtract value.
Any software developer has experienced the pain of having accidentally
deleted their work at least once in their career. Days, months, or even years
of work can be lost, leading to millions in losses; in some cases without a
clear way of recovery

In the past, software developers had to create backups of their working
source code somewhere safe manually. If something wrong happened, only
a tiny amount of work would be lost, as we would have a snapshot of the
last known working version.
However, any manual process is prone to errors:

Not backing up as often as needed. The backup process is long and
complex for some large applications, so we did not back up as often as
we should. The longer we spend without creating a backup of our
application’s codebase, the more work we will lose in case of an
adverse event.
Missed backups: A developer may forget to back up the codebase
when introducing changes to the application. This situation happens a
lot for minor changes that had to be done in a hurry to fix critical
problems in production, which developers would often forget to back
up.
Incomplete backups: Developers may miss one or two files while
creating the backups, unknowingly leading to loss of work.
Incorrect backups: Developers may accidentally back up files that
were not correctly tested or approved in peer reviews.

Any of these previously listed problems can prevent us from deploying a
working version of the application to the production environment. Version
control systems (VCS) fix or mitigate most of these issues.
VCS incrementally stores changes done to a file repository. They keep a file
backup, but they also hold a historical log of each change to the codebase.
Using these changelogs, we can know precisely how the code has changed
in time, who changed it, and when it was changed. This level of meta-
information is critical while debugging errors or reverting faulty code.
VCS provides data integrity measures for an application’s source code:

Observability: Each change done to the source code needs to be
visible and explainable.
Recoverability: Once we have a working version of the application,
we should be able to recover it if future changes to the codebase cause
errors or break the application.

No repudiation: Each change to the source code is stored along with
the person who introduced it.

On top of it all, VCS provides an opportunity for peer reviews. Each change
done to the codebase can be inspected and reviewed by other team
members. These reviews significantly reduce the probability of defects or
poor quality code being added to the application.
The most prevalent version control systems are Git and SVN.

Git
Git is a distributed version control system where files are stored inside a
repository. Repositories can be replicated across multiple remote servers
and clients. At a very high level, a standard Git repository looks like as
shown in Figure 9.4:

Figure 9.4: High-level view of a Git project

Local repositories are copies of a remote repository. The remote repository
is the source of truth for the codebase, and all changes to the local
repositories are synced to the remote repository through Git’s API.

Creating a Git repository

Having installed Git on our computer (more details in the “Resources”
section of this chapter), creating a Git repository is as easy as executing the
following command:

1. git init

This command should return a message similar to the following:
Initialized empty Git repository in …

We can see the state of the Git repository with the following command:

1. git status

Assuming the repository is empty, we should see the following message in
the console:
On branch master

No commits yet

nothing to commit (create/copy files and use “git add” to

track)

This message indicates that the repository is empty but ready to work. Git
organizes code in branches (we will discuss branches in the following
sections). By default, all the code in this repository will be stored in a
branch called “master”.

Note Git uses the branch name “master” to identify the main branch
(again, we will discuss the concept of branches later in this chapter).
The default branch name “master” has been slowly replaced with
“main” to use a more inclusive term. Large Git repository providers
like GitHub have changed their naming conventions to follow this
pattern.

Staging and committing new files
Each set of changes done to the files in a Git repository is called a commit.
Commits are applied on top of each other, following their creation order.
The list of commits in a repository is the changelog.
To continue with our example, let us update our repository by adding a
Python script. We will create a file inside our freshly created Git repository:
./Application.py

Then, we add some Python code to Application.py:

1. class Application:
2. def __init__(self):
3. print(“App started”)
4.
5. if __name__ == ‘__main__’:
6. Application()

If we execute git status, we should see the following text:
On branch master

No commits yet

Untracked files:

 (use “git add <file>…” to include in what will be committed)

 Application.py

nothing added to commit but untracked files present (use “git

add” to track)

We can see that Git considers our new file as “untracked”, meaning that the
new file is not yet part of the repository. This situation may sound
confusing (considering the file is already inside the repository directory),
but this distinction has a good reason.
Git will not consider any new files as part of the repository until we
explicitly indicate it by staging and committing this file. This step is
required because this file may be part of work in progress and not ready to
be included in the repository.
The first step to adding any change to the repository is to stage it. Staging
allows us to selectively choose which files to include in a commit and
which not to. To stage this new file, we use the following command:

1. git add Application.py

After executing git status, we will now see the following message:
On branch master

No commits yet

Changes to be committed:

 (use “git rm --cached <file>…” to unstage)

 new file: Application.py

By staging the new file to the repository, Git now recognizes this file as part
of the project but it is not yet committed. Staged and committed files are
distinct yet closely related:

Only staged files can be committed.
Only committed files can be merged into the remote repository.
Only committed files are added to the changelog.

We can confirm the changelog is empty by executing the following
command:

1. git log

Since we have not committed any changes, Git will reply with the following
message (confirming that staging is not enough to persist this change into
the repository):
fatal: your current branch ‘master’ does not have any commits

yet

Having staged the new file, the next step is to commit it. We use the
following command to create a commit that will include all staged files:

1. git commit -m “Add the file Application.py”

The “-m” attribute displays the message we will use for the commit. This
message is critical since it allows authors to describe why they are making
these changes, along with any other information that may be helpful for
other collaborators.
After executing the commit command, we will see a reply from Git similar
to the following text:
1 file changed, 6 insertions(+)

create mode 100644 Application.py

Now, when we execute git status, we will see a slightly more
straightforward message:
On branch master

nothing to commit, working tree clean

The Application.py file is now part of the local repository. However, the
file is not part of any remote repository yet. We can confirm so by executing
the following command:

git log

This command will return the changelog for the local repository. In this
case, we will see something similar to the following message:
commit 6879f6a9aa21ba4967f36348e8f7644f0dd5b014 (HEAD ->

master)

Author: Pedro Marquez <pmarquez@Pedros-Air.attlocal.net>

Date: Sat Nov 27 18:45:39 2021 -0600

 Add the file Application.py

Before we describe the contents of the commit record in detail, let us
modify the file and commit this modification. This extra step will provide a
more robust example.

Note Adding files to a repository.
While Git is used extensively to store and backup software’s source
code, it can store any file type. Most Git features are applied to text-
based files, but the repository can also store binary files.
Besides being used for software projects, Git is used to backup and
keep track of changes made to books, blogs, and other projects that
can take advantage of advanced file management.

Making changes to existing files
Staging and committing new files is just one case of the overall Git flow.
More often than not, most of the Git changes we will do to a repository are
to update existing files.
Let us update Application.py to change the text the script prints and add a
new Python comment above the exiting print line:

1. class Application:
2. def __init__(self):
3. # The following line of text was changed
4. print(“The application is now started”)
5.
6. if __name__ == ‘__main__’:
7. Application()

If we execute git status, we will see the following message:
On branch master

Changes not staged for commit:

 (use “git add <file>…” to update what will be committed)

 (use “git restore <file>…” to discard changes in working

directory)

 modified: Application.py

no changes added to commit (use “git add” and/or “git commit -

a”)

We can see the list of files that have been modified but not staged or
committed yet.
Before we stage the changes done to the file, we need to know precisely
what changed. We can execute the following command to highlight all the
changes done to existing files in the repository:

1. git diff

The following command will print the list of changes done to each file,
which in this case is only Application.py:
diff --git a/Application.py b/Application.py

index 38606cb..46e1977 100644

--- a/Application.py

+++ b/Application.py

@@ -1,6 +1,7 @@

class Application:

 def __init__(self):

- print(“App started”)

+ # The following line of text was changed

+ print(“The application is now started”)

if __name__ == ‘__main__’:

 Application()

\ No newline at end of file

Git uses its internal diff tool to check the difference between the existing
file in the repository and the unstaged modifications done to the file we
have in our project’s folder.
In the preceding example, we can see that the lines marked with a
subtraction sign (“-”) are lines that belong to the old version, while those

lines marked with a plus sign (“+”) are the changes we have done in the
current version of the file. In this example, we “removed” the code at line 8
while adding lines 9 and 10. The rest of the file remains the same.
Now that we have verified that the file has changed as we expected it to, we
can stage and commit it:

1. git add Application.py
2. git commit -m “Update the print message and add comment”

Now, we execute git log to confirm the new commit we created was
successful:
commit cb8bef5a4755f4b90eb78a1fc6ff2798ac14b837 (HEAD ->

master)

Author: Pedro Marquez <pmarquez@Pedros-Air.attlocal.net>

Date: Sat Nov 27 19:03:34 2021 -0600

 Update the print message and dd comment

commit 6879f6a9aa21ba4967f36348e8f7644f0dd5b014

Author: Pedro Marquez <pmarquez@Pedros-Air.attlocal.net>

Date: Sat Nov 27 18:45:39 2021 -0600

 Add the file Application.py

Commit details
From the changes we just did to the Git repository, we can see that each
commit has a set of attributes:

commit: A cryptographic hash that is generated to identify the changes
in this commit. This attribute is an identifier for the commit.
Author: The person who created this commit.
Date: The date and time this commit was created.
The commit message: The message we passed in the -m attribute of
the git commit command.

The git log command has many options that can give us a better view of
each commit’s details. For instance, the git log -p command displays the
list of commits along with all the code changes that are included in each
commit:

commit cb8bef5a4755f4b90eb78a1fc6ff2798ac14b837 (HEAD ->

master)

Author: Pedro Marquez <pmarquez@Pedros-Air.attlocal.net>

Date: Sat Nov 27 19:03:34 2021 -0600

 Update the print message and dd comment

diff --git a/Application.py b/Application.py

index 38606cb..46e1977 100644

--- a/Application.py

+++ b/Application.py

@@ -1,6 +1,7 @@

class Application:

 def __init__(self):

- print(“App started”)

+ # The following line of text was changed

+ print(“The application is now started”)

if __name__ == ‘__main__’:

 Application()

\ No newline at end of file

commit 6879f6a9aa21ba4967f36348e8f7644f0dd5b014

Author: Pedro Marquez <pmarquez@Pedros-Air.attlocal.net>

Date: Sat Nov 27 18:45:39 2021 -0600

 Add the file Application.py

diff --git a/Application.py b/Application.py

new file mode 100644

index 0000000..38606cb

--- /dev/null

+++ b/Application.py

@@ -0,0 +1,6 @@

+class Application:

+ def __init__(self):

+ print(“App started”)

+

+if __name__ == ‘__main__’:

+ Application()

\ No newline at end of file

Notice that the results of this command can be pretty long, as we are
printing every change done to each commit.

Branches
A trendy concept in movies and TV shows is that of multiverses. In these
movies, some events create alternate timelines or realities where the
protagonists must complete a task before returning to the main timeline. Git
branches follow that same pattern (as seen in Figure 9.5).
Following the multiverse analogy, the master or main branch is the main
timeline. The one reality from which all other universes are derived. All
other branches are alternative realities: A parallel version of the main
branch where changes are introduced:

Figure 9.5: Branches create alternate timelines to introduce changes to the repository

When developers are working on a new feature, they may need to break all
code changes into multiple commits. Multiple, small commits make code
reviews, debugging, and overall source code management easier.
Instead of adding work-in-process modifications to the main branch,
developers can create a new branch to include all the commits for the new
feature. Once the feature is complete, the alternate branch can be merged
back into the main branch.
Branches give us much flexibility to break down our work into multiple
pieces.
In our example, we can create a new branch called add-print-messages
which is based on the current (“master” in this case) branch:

1. git branch “add-print-messages”

The following command will create a new branch named add-print-
messages. We can create as many branches as we need:

1. git branch super-cool-feature

We can use the following command to see all the branches in the local
repository:

1. git branch

Along with the list of branches, the star character tells us the currently
active branch. Only one branch can be active at a time, and in this example,
it is master:
 add-print-messages

* master

 super-cool-feature

Since only one branch can be active at the time, we can switch branches
with the git checkout command:

1. git checkout add-print-messages

To simulate adding a new feature, we can add another print statement to
Application.py.

1. class Application:
2. def __init__(self):
3. # The following line of text was changed
4. print(“The application is now started”)
5.
6. if __name__ == ‘__main__’:
7. print(“This is a new feature”)
8. Application()

We can stage and commit the changes to our new feature:

1. git add Application.py
2. git commit -m “Add a new feature”

Looking at the last two commits in git log, we can see which commit is
the last we did in each branch:

commit 9f63c03a91daf1184af281fa00df60ac79078aef (HEAD -> add-

print-messages)

Author: Pedro Marquez <pmarquez@Pedros-Air.attlocal.net>

Date: Sat Nov 27 19:38:24 2021 -0600

 Add a new feature

commit cb8bef5a4755f4b90eb78a1fc6ff2798ac14b837 (super-cool-

feature, master)

Author: Pedro Marquez <pmarquez@Pedros-Air.attlocal.net>

Date: Sat Nov 27 19:03:34 2021 -0600

 Update the print message and dd comment

The log shows that the add-print-messages branch has one more commit
than super-cool-feature and master. This commit contains our new
“feature”.

Merge
Let us assume the feature is complete after the commit we just created. We
now want to return to the good old main timeline: The master branch. We
can do this by merging the feature branch into master.
We first switch to the master branch, and we then execute git merge:

1. git checkout master
2.
3. git merge add-print-messages

All commits in the add-print-messages branch will be copied to the
master branch. We can confirm this by executing git log again:
commit 9f63c03a91daf1184af281fa00df60ac79078aef (HEAD ->

master, add-print-messages)

Author: Pedro Marquez <pmarquez@Pedros-Air.attlocal.net>

Date: Sat Nov 27 19:38:24 2021 -0600

 Add a new feature

commit cb8bef5a4755f4b90eb78a1fc6ff2798ac14b837 (super-cool-

feature)

Author: Pedro Marquez <pmarquez@Pedros-Air.attlocal.net>

Date: Sat Nov 27 19:03:34 2021 -0600

 Update the print message and dd comment

Now, the top of both master and add-print-messages point to the same
commit ID, which means that both branches are now identical. The timeline
was merged.

Remote repositories
Until now, all our commits are only included in our local repository. Git
promotes collaborative work with the use of remote repositories.
Remote repositories need to be kept in sync with local repositories. For that,
developers put all commits in their local repository first. Once we are ready
to share our work with everyone, we can push all local changes to a remote
repository.
A popular place to create remote repositories for free is GitHub. We can
create an account and an empty repository (again, documentation on how to
do this is included in the Resources section).
Once we have created an empty repository in a service like GitHub,
integrating it with our local repository is as easy as adding a new origin:

1. git remote add origin https://github.com/pfernandom/my-

remote-repo.git

An origin is a remote instance of our repository. We can add multiple
origins to the same local repository.
When we created the local repository, the name master was automatically
chosen for our main branch. GitHub specifically uses main for the primary
branch name. To make them match, we can rename our master branch
using the git branch -m command:

1. git checkout master
2. git branch -m main

Now that master is renamed as main; we can sync our local repository with
the GitHub remote repository using the following command:

1. git push -u origin main

A response similar to the following will be displayed in the terminal:
Enumerating objects: 9, done.

Counting objects: 100% (9/9), done.

https://github.com/pfernandom/my-remote-repo.git

Delta compression using up to 8 threads

Compressing objects: 100% (6/6), done.

Writing objects: 100% (9/9), 979 bytes | 979.00 KiB/s, done.

Total 9 (delta 1), reused 0 (delta 0), pack-reused 0

remote: Resolving deltas: 100% (1/1), done.

To https://github.com/pfernandom/my-remote-repo.git

* [new branch] main -> main

Branch ‘main’ set up to track remote branch ‘main’ from

‘origin’.

The remote and local repositories are now in sync.

Cloning repositories
Let us say we wanted to share this new project with other team members.
As long as they have access to a public Git repository like
https://github.com/some-username/my-remote-repo.git, they can clone
the repository into their computers with the following command:

1. git clone https://github.com/some-username/my-remote-

repo.git

A fresh copy of the repository is created after this command completes
successfully.

Merging conflicts
Like any distributed system, a common cause of developers’ headaches in
Git is merge conflicts. These happen when two or more developers make
conflicting changes to the same file in parallel, and then they all try to
merge their modifications into the remote repository. Figure 9.7 shows the
simplest case of a merge conflict:

https://github.com/some-username/my-remote-repo.git

Figure 9.6: Git merge conflict

The flow displayed in Figure 9.6 is described more in-depth in the
following steps:

Developer 1 deletes the Application.py file from their local
repository.
Developer 1 commits the changes and pushes the commit to the
remote repository.
Developer 2, who has not updated their local repository (and thus does
not know Developer 1 deleted the file) updates Application.py in
their local repository.
Developer 2 commits the changes and tries to push the commit to the
remote repository.
The push operation fails, and Git asks Developer 2 to update their
local repository before pushing.
Developer 2 tries to update their local repository. The update fails, and
Git requests Developer 2 to fix the merge conflicts between the code
version in the remote repository (the changes done by Developer 1)
and the code version in Developer 1’s local repository.

Since Developer 1 merged their commit first, they will see no conflicts
while pushing changes to the remote server. Every other developer who

commits conflicting updates to Application.py after Developer 1 pushes
their changes will get merge conflicts.
Developers must manually solve merge conflicts. The process usually
requires the developer to understand the difference between the version of
the file in the remote server and the changes in the conflicting commit and
then merge both versions.
We can avoid merge conflicts by updating our local repository often,
especially before creating a commit. However, merge conflicts are part of
the Git flow, and they help keep the remote repository clean.

Using Git hooks
The concept of hooks in Git is a powerful one. Hooks are custom scripts
that run when important actions occur in a Git repository.
We can configure a Git repository to execute a script on the local repository
when Git-specific actions are performed. For instance, we can run
automated scripts for actions like pre-commit, which can be used to inspect
the staged files that are about to be committed, or post-merge, which runs
after a successful merge command.
We can hook to actions in the remote repository too. Hooks like update or
post-receive are executed when we send the code from a local repository
to a remote one. Using Git hooks, we can trigger a new deployment when
the code is merged to the remote server, making the deployment flow
reactive. A visual representation of how hooks interact with the different
tasks in a Git repository can be seen in Figure 9.7:

Figure 9.7: Git hooks run when actions like “commit” or “push” are executed

We can also use hooks for code quality purposes. We can run linters and
validators before deployment to stop changes that introduce code quality
issues. Only the code that passes all tests can be merged into the remote
repository and deployed to production. These extra validation steps provide
defense layers against new defects.

Git to enforce reproducible code
Git repositories allow our source code to become reproducible. If we
execute hooks to enforce that any commit is tested and valid, we know that
every time we clone a repository, the code is correct and “healthy”.
If we clone the repository for each deployment, we know the code about to
be deployed is validated and tested. Each change to be deployed is
accounted for. If the deployment fails for causes independent of the
application (like the server’s hard drive getting full), we can quickly and
deterministically retry the deployment later.
Suppose that, for some reason, the pre-commit validations fail to catch a
bug before it is merged and deployed. In that case, it is easy to find which
commit includes the problem by calculating the difference in commits
between the last good deployment and the deployment that caused the
problem.

SVN and other CVS
While Git is widely used to keep track of software versioning, other CVS
like Subversion (SVN) are actively used to track open-source projects (for
instance, FreeBSD is tracked using SVN). While they have operational and
design differences with Git, the same basic concepts are shared by any
CVS: Keeping track of the incremental changes done to a project.
As stated before in this book, there is no single tool to do all jobs
efficiently. Some projects have adopted SVN instead of Git because they
find SVN more adequate for their project. Some people think SVN is
simpler than Git, which helps them concentrate on their work.
We will not visit the specifics of SVN or other CVS because there is too
much information to cover that is out of the scope of this book. This chapter

aims to understand why we use CVS like Git and how they collaborate with
the CI/CD pipeline.

Virtual machines
Earlier, we discussed how servers used to get themselves in really complex
states because the applications they host would leak the state into the server
and into each other, adding, updating, or removing files in time. Clearing
these complex states required stopping all the hosted applications for
manual maintenance.
It is clear that sharing the server space between multiple applications was a
messy challenge, but how could we impose boundaries effectively?
Virtualization was born in the early 70s to allow multiple users to share
computational resources. Instead of giving access to users to one shared
environment in a server, administrators can create multiple virtual
environments, one for each user or tenant.
Virtualization helps organizations reduce expenses and increase
productivity. Servers can run multiple virtual environments and multiple
isolated applications on the same server. This separation was practically
impossible to achieve without virtualization.
A Virtual Machine (VM) is a “virtual representation of a physical
computer.” Each virtual machine can have its own OS and file system, and
multiple VMs can be hosted in a single physical server, as shown in Figure
9.8:

Figure 9.8: A VM is a computer running inside another computer

VMs were a game-changer for system administrators. If a VM’s state would
get so messy that it needed to be cleaned up, administrators could create a
new VM using the snapshot of the last good state of the server and then
swap the messy VM with the fresh copy.
VMs reduced the amount of scripted work needed to create a new
environment, as whole snapshots could be created with the state of a fully
configured server. Scripts add minor customizations on top of the base
image.
VMs helped reduce the amount of state leaked from one application into
another as independent applications could be deployed to their own VM. If
a single VM goes down, the rest of the applications deployed in the other
VMs would still operate correctly. Thanks to this level of flexibility,
production environments became more robust and resilient.
An excellent benefit for software development teams who adopted
virtualization is that they could use identical copies of their production
environments to create development or test environments. By reducing the
difference between test and production environments, developers can
accurately debug new and existing bugs.

Virtual infrastructure
VMs are hosted on top of a special virtualization tool called hypervisor.
The hypervisor manages server resources like disk space, memory, and
input and output devices on behalf of each VM. Each VM can only see the
resources the hypervisor assigns to it. The high-level infrastructure can be
seen in Figure 9.9:

Figure 9.9: The hypervisor manages the access of each VM to the physical server’s resources

Hypervisors can be embedded inside a host OS or run directly on the
server’s hardware, effectively making the hypervisor an OS by itself. This
variety of infrastructure options gives software development teams the
flexibility they need to create robust architectures.
VMs are the ultimate step towards creating a reproducible environment, as
they share nothing else than low-level computational resources and can be
created on-demand. There are practically no downsides to working in a VM
instead of directly working on the host server, making them a default choice
for most modern infrastructures.

Containers (Docker)
Virtualization through VMs is an essential piece of any infrastructure. The
VM acts as a sandbox that isolates its processes from the host OS, the
server interfaces, and other VMs. However, each VM contains a full copy
of the OS, with all the bundled apps and the memory and storage overhead
an OS involves. VMs are definitely not lightweight.

Containers were born out of the need for lightweight, reproducible
environments. The goal for containers is to provide the same isolation
benefits VMs offer without the overhead, as less overhead means we can
host more instances of a container than we would of a VM.
Containers took a different approach to virtualization. Instead of
virtualizing server environments containing multiple applications and
processes, containers aim to isolate individual applications and their
dependencies.
The leading platform currently used for containers is Docker. Using the
industry-standard “Containerd”, Docker defines specifications for creating,
deploying, and packaging applications inside containers. Docker is
considered a Platform-as-a-Service (PaaS).
Similar to how VMs run on top of a hypervisor, containers run on top of the
Docker platform. However, instead of only sharing low-level computational
resources as VMs do, containers share some OS services. Figure 9.10
shows the high-level view of Docker:

Figure 9.10: Docker runs on top of the host OS

The main advantage of containers is that developers can define one single
environment that both runs in their development machine and production
servers. Each container installs the exact version of all the dependencies it
needs, no more, no less, removing the differences between development and
production environments. Moreover, since containers only install the
services and dependencies they need to execute the application, they
consume fewer resources than VMs.
While VMs commonly host multiple applications or services, typically we
create one container per application, providing a higher level of isolation
and independence.

VMs versus containers
Let us be clear. Containers do not replace VMs. Containers address only a
subset of use cases traditionally addressed through VMs. There are still
many cases where virtualization is preferable to containers. VMs are
preferred over containers to host stateful services like database servers. We
will discuss more details about containers and storing state in the next
section.

Note Containers and databases
Containers can be used to host databases. Volumes are a way to
persist container data that can be leveraged to host a database.
However, most orchestration tools (Kubernetes, Openshift, among
others) are designed to handle stateless containers. Configuring these
tools to run a database in multiple container replicas is a difficult
task, one that many database vendors do not support natively.
As a good rule of thumb, avoid using containers to host critical or
data-intensive databases. VMs are better suited for hosting these
services.

Working with stateless containers
Given the low footprint containers have compared to VMs, we can easily
and quickly generate new instances of a container on demand. This makes
containers an excellent tool for the following cases:

Recreate from scratch an application that crashes. Assuming all code
changes go through version control into a remote code repository,
creating new containers will always contain the most up-to-date
version of the application.
Create replicas of the application on-demand, possibly distributed
across multiple servers to increase server capacity. These replicas can
make for “elastic” clusters: The number of replicas can scale up and
down based on the application’s traffic.

Orchestration tools like Kubernetes make it easy for teams to create a
cluster of containers. Since these tools themselves can be installed as a
cluster, we can create a pool of resources that can scale up and down as
needed. Figure 9.11 shows this error handling process as follows:

Figure 9.11: When a container in the cluster crashes, Kubernetes can create a new instance to
replace it.

The orchestration model followed by tools like Kubernetes is designed on
the idea of stateless containers. Stateless containers allow us to replace one
instance of a container with a new instance without causing disruptions to
the users.
Destroying and creating new container instances also means destroying all
data inside the existing container. Everything that is not explicitly moved to
persistent storage (or a source code repository) will be deleted. This is why,
if we want to persist data generated by an application running within a
container, that data must be stored outside the container.
If we go back to Chapter 2, The Client-server Architecture, we remember
this is a known pattern: HTTP assumes that the server is stateless. The
stateless characteristics of HTTP servers allow us to do load balancing
without sticky sessions. In HTTP, all state (like a user’s session data) is
persisted through cookies, session tokens, and persistent storage in
databases.

Use case: Creating a reproducible deployment
environment for the Pizza Place app using Git and
Docker
To completely understand the benefits of using Docker, let us encapsulate a
web application’s environment in a container that can be replicated in any
server running the Docker platform, including orchestration tools like
Kubernetes.
For this, we containerize an Express server running an application using the
MVC pattern. This Express server will host the Pizza Place’s home website.
The server uses Node v16 and it will serve as an example for any stateless
web application running inside a container.
However, we will not just build one instance of the application. We will
build three application instances, which will be load-balanced by an Nginx
server (also running inside a container). All containers are managed and
connected by Docker Compose, a Docker tool that builds the containers
and binds them together through an internal network.

Note: Nginx is a web server that can also be used as a load balancer,
HTTP cache, and reverse proxy, among other roles. Nginx is a
lightweight yet powerful solution to put in front of other HTTP
services.

Setting up the application
Our example has the overall project structure:
├── docker-compose.yml

├── nginx

│ ├── Dockerfile

│ └── nginx.conf

└── web

 ├── Dockerfile

 ├── package-lock.json

 ├── package.json

 ├── public

 ├── server.js

 └── views

At the root directory, we have a docker-compose.yml file. This file will
describe all the Docker wiring needed to create the three instances of the
container and the load balancer. We will discuss the details of this file soon.
For now, let us focus on the two directories, nginx and web.

The web directory
The web folder contains our Express server (along with its dependency files,
templates, and other static resources like images). This folder also includes
a Dockerfile: Docker’s most basic configuration file. Dockerfile describes
the contents of a Docker image. Docker images are used to create
containers.
The following is the content of the Dockerfile:

1. # use the base docker image for Node ١٦
2. FROM node:16
3. # create app directory
4. WORKDIR /usr/src/app
5. # copy all node related files
6. COPY package*.json ./
7. # install application dependencies
8. RUN npm install
9. # copy application into container

10. COPY views/* views/
11. COPY public/images/*.jpeg public/images/
12. COPY server.js server.js
13. # expose HTTP port
14. EXPOSE 3000
15. CMD [“node”, “server.js”]

The Dockerfile has comments that describe what each command does, but
in general, the following steps are taken:

We download a pre-built Docker image called node:16, which
includes a fresh install of Node v16.
We create a folder inside the container, copying all the Express server
files: server.js, package.json, the views, and public directories.
Once we copied all the files needed to run the application, we expose
the port 3000.
We execute the server through the node server.js command.

When this container is instantiated, each step in the Dockerfile will be
executed in order. The last command starts the application’s process,
whether it is running in an embedded server or if the Docker container
already includes a server for the application to run on.
Notice that, since NodeJS is an interpreted language, we copy the source
code directly to the container. If this were a Java or C++ application, we
would have to deploy the compiled version of the application.
At this point, we can test whether the container is working correctly by
manually building the Docker image and running a container. The following
commands build the Dockerfile inside the web directory and create a Docker
image named as pizza-place-app:

1. cd web
2. docker build . -t pizza-place-app

Docker stores compiled images in a local repository. Whether we compiled
it or got it from Docker Hub, every image is first downloaded to the local
image repository. We can create a container instance of the image we just
created and expose it to the localhost:3000 URL with the following
command:

1. docker run -p 3000:3000 -d --name pizza-place-app pizza-
place-app

Now, we can open Docker’s graphic user interface, and we will see the
container running successfully, as shown in Figure 9.12:

Figure 9.12: The new container should be included in the list of running containers

If we click on the container, we will see its standard output, confirming that
the container is up and running. The containers console will be displayed as
shown in Figure 9.13:

Figure 9.13: Docker allows us to see the application’s standard output

The nginx directory
The other directory at the root is the nginx folder. It contains a Dockerfile
that describes the steps to instantiate the load balancer container:

1. FROM nginx

2. # copy the nginx configuration
3. COPY nginx.conf /etc/nginx/nginx.conf
4. # expose load balancer at the following port
5. EXPOSE 8080
6. # Start load balancer
7. CMD [“nginx”, “-g”, “daemon off;”]

The Dockerfile highlights are as follows:

As we did for the web folder, we use the base Docker image nginx,
which includes an instance of the Nginx server.
We create a custom nginx.conf file to replace the default
configuration file shipped with Nginx.
We copy this file inside the Nginx file system to replace the existing
configuration file.
We expose the container’s 8080 TCP port and start the server.

Note: Docker and TCP
The network adapter used by a Docker container is isolated from the
rest of the containers and the host OS. This separation allows us to
create multiple containers that publish services to the same (internal
to Docker) TCP port. This port is then mapped to a port in the host
machine.
In this example, we create three instances of the same Express server,
each published in their container’s 3000 port, all without conflicts.
However, if we need to expose a container’s TCP port outside the
container (to access the server from the host’s browser), we can map
the container’s port to a TCP port in the host. A specific port in the
host can only be mapped to a single container.
If, for example, we needed to access each container’s 3000 port from
ouside of the Docker internal network, each would have to be mapped
to a different host TCP port: “`container1:3000 -> localhost:3000`”,
“`container2:3000 -> localhost:3001`”, and so on for other containers.

The docker-compose.yml and nginx.conf files
Now, to connect everything, these are the contents of the docker-

compose.yml file:

1. version: ‘3.2’
2. services:
3. webapp1:
4. build: ./web
5. tty: true
6. webapp2:
7. build: ./web
8. tty: true
9. webapp3:

10. build: ./web
11. tty: true
12. lb:
13. build: ./nginx
14. tty: true
15. links:
16. - webapp1
17. - webapp2
18. - webapp3
19. ports:
20. - ‘8080:8080’

Let us look closely at the services section, which describes all the
containers that the Docker Compose stack creates:

1. webapp1:
2. build: ./web

This part of the configuration means that Docker will create a service called
webapp1 by building the image whose Dockerfile is contained at the root of

the ./web directory. Docker will then instantiate a container using that
image. These are the same actions we took before when we executed the
docker build command, but in this case, Docker Compose takes care of
running them for us.
We are creating three services: three containers with a copy of our Express
web server: webapp1, webapp2, and webapp3. We also created a fourth
service, lb, using the custom Docker image for the Nginx server.
Notice that Docker Compose uses the service names as domain names for
the Docker’s internal network. We can refer to each container through the
URLs webapp1:3000, webapp2:3000, and webapp3:3000, respectively.
But, again, these domain names only work when used within the other
containers in this docker-compose.yml file, as the Docker Compose internal
network performs the domain name resolution.
The use of these internal domain names makes it easy to configure the load
balancer:

1. events {
2. worker_connections 1024;
3. }
4.
5. http {
6. upstream localhost {
7. # use the domain defined in docker-compose.yml
8. server webapp١:3000;
9. server webapp٢:3000;

10. server webapp٣:3000;
11. }
12. server {
13. listen 8080;
14. server_name localhost;
15. location / {
16. proxy_pass http://localhost;
17. proxy_set_header Host $host;

18. }
19. }
20. }

Notice that we only “expose” or map the Nginx port 8080 to
localhost:8080, and we do not map each Express container’s 3000 port to
any host port. We only want users to access the servers through the load
balancer and not through each instance directly.
Instead of building each Dockerfile individually, we can rely on Docker
Compose to do the job:

1. docker compose build

Once all the images for each service attribute are built, we can start the
entire mini-cluster with the following command:

1. docker compose up -d

Going back to Docker’s GUI, we will see all three containers for the
Express server and the one container for the Nginx server successfully
running, close to what we can see in Figure 9.14 as follows:

Figure 9.14: The GUI shows Docker Compose created the containers successfully

Furthermore, if we navigate through a browser to http://localhost:8080
the Nginx server exposed through the port 8080, we will see the server’s
home web page, as shown in Figure 9.15:

Figure 9.15: The Pizza Place app running in a mini cluster

Each request will hit a different container, as configured by Nginx. Suppose
we use the Express application included with this book’s source code. In
that case, we will find that the web page renders a message that says
something like” (Response provided by container 3601fdae12ec)“,
where the alphanumeric string is the ID of the container. As we hit different
containers, this string alternates between three values: one for each
container.

Adding Git
This Docker Compose setup is excellent for development. We can change
the source code, rebuild the images, and re-deploy the updated containers.
We can even synchronize the internal container files to the host machine
files using volumes. However, this setup is not great for a CI/CD pipeline:
The files copied to the container may contain changes that are not part of
the primary source code repository.
A production-level setup for this example will checkout the code for the
Express server every time Docker creates a container:

1. FROM node:16
2. WORKDIR /usr/src/app
3.
4. # clone a fresh version of the codebase
5. git clone https://github.com/yourusername/my-remote-

repo.git

6.
7. # navigate to the cloned repository
8. CD my-remote-repo
9.

10. RUN npm install
11.
12. EXPOSE 3000
13.
14. CMD [“node”, “server.js”]

This small change connects the benefits of VCS with the benefits of
containers: provide reproducible environments, end-to-end. Using this
Dockerfile, we are confident that each container gets created with tested,
reviewed, and validated code. We are not deploying custom, untracked
manual changes made to the container.

Docker in CI/CD
For a production CI/CD pipeline, we would like to do some extra steps to
increase confidence in the quality of our containers.
First, we would like to decouple creating the container image from creating
the container instance. Instead of building an image and immediately
deploying it, we will build it and deploy it to a repository of Docker images.
This repository can be a standalone server or hosted within an orchestration
server like Kubernetes.
This separation has several benefits:

We can create multiple versions of a container’s image.

If we fail to create a new image, we can still use a previous version to
keep creating containers.
Image repositories are historical records we can visit if we need to
recreate an instance of an old version of our application version.

A revised CI/CD pipeline for Docker-based applications can be seen in
Figure 9.16:

Figure 9.16: CI/CD process for a Docker-based application

Each component in the pipeline provides visibility to the development team
to diagnose problems in the delivery process. If the deployment fails, we
can quickly identify the problem by looking at what step in the process was
unsuccessful.

The trade-off
The complete CI/CD pipeline we just described is complex. If our
application is small, a pipeline like this may be prohibitively expensive in
terms of effort and money. Multiple servers and a fair share of maintenance
work are required to enable this CI/CD flow.

We have already discussed the problems each component in the pipeline
fixes. We need to consult with our teams about how complex our CI/CD
flow should be. Small projects may work correctly with only a subset of
these tools, but we should not forget the trade-offs this choice brings.
Not all applications are ready to invest in using Docker and all the
infrastructure required. Understanding this is good, as it will prevent teams
to introduce unnecessary complexity. However, as our application grows in
size, containers help save money and effort in the long run.
In the most basic setup, we should always have at least a VCS like Git to
keep track of our application’s source code and a CI/CD server that builds,
tests, validates, and deploys each change. The goal for any experienced
developer is to adopt the right toolset necessary to be confident that the
application they deliver to their clients is reliable and maintainable.

Conclusion
As applications have grown in complexity, so has the process of delivering
them to our users. There is much room for failure during the integration and
deployment of an application, which is why we have historically built
multiple tools to make this task easier.
We must often integrate and deploy to deliver value to our users faster and
find bugs sooner. The only way to reliably do this is by automating the
delivery process to CI/CD pipelines.
A CI/CD pipeline relies on reproducibility for development, test, and
production environments, even for the source code itself. Being able to
easily and quickly create copies of our environments and applications gives
us the certainty that we can replace applications in a bad state or scale to
meet load requirements.
We rely on Version Control Systems (VCS) like Git to make the code
reproducible. Git keeps a copy of our source code along with all the
historical changes that have been done to it. VCS gives us the confidence
that we will always have a working copy of the application, even when we
unintendedly introduce new defects or a developer accidentally deletes their
local copy of the project’s source code.
Virtual environments like Virtual Machines (VMs) and containers
encapsulate all the dependencies an application needs, allowing us to

configure an environment once and run it everywhere.
Containers offer similar benefits to virtual machines, but they have a lighter
memory footprint and operate closer to the application.
Virtualization, in general, provides isolation between applications. Changes
like migrating to newer versions of compilers and dependencies can be
done safely without adversely affecting other applications running on the
same physical server. It also helps to limit the unintended impact one
application can have on others deployed close to it.
Overall, CI/CD pipelines provide a well-tested and robust deployment
process that allows developers to concentrate on building quality into their
applications without losing much time dealing with conflicts and
unreproducible issues resulting from the random state in a production
server.
This chapter completes the second part of this book. We now have an
excellent end-to-end vision of all the moving pieces involved in creating
backend applications. From now on, we will focus on building quality in
more data-intensive applications and increasing our skills to become more
senior developers.

Questions
The following is a list of common interview questions about the
deployment of software applications:

What is the difference between a Docker Image and a Docker
Container?
What is the difference between Continuous Integration and
Continuous Deployment?
What is the difference between a container and a virtual machine?
Describe a use case for each.
What is a hypervisor? What function do Git branches have? What will
“git clone” do?

Resources

Git installation documentation: https://git-
scm.com/book/en/v2/Getting-Started-Installing-Git
How to create a new GitHub repository:
https://docs.github.com/en/repositories/creating-and-managing-
repositories/creating-a-new-repository
Customizing Git – Git Hooks: https://git-
scm.com/book/en/v2/Customizing-Git-Git-Hooks
Apache Subversion (SVN): https://subversion.apache.org/
“5 benefits of virtualization”: https://www.ibm.com/cloud/blog/5-
benefits-of-virtualization
The standard for containers: Containerd: https://containerd.io/

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://docs.github.com/en/repositories/creating-and-managing-repositories/creating-a-new-repository
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://subversion.apache.org/
https://www.ibm.com/cloud/blog/5-benefits-of-virtualization
https://containerd.io/

A

CHAPTER 10
Creating High-performance Apps

pplication performance is one of the most critical aspects of software
development, especially as the application grows and more people adopt it.

In this chapter, we describe what factors impact application performance from
the point of view of a back-end implementation and what practices can be
adopted to guarantee users will not stare at a loading screen and leave our app
frustrated.

Structure
In this chapter, we will learn the following topics:

Measure to improve the performance

Synthetic testing versus RUM
Using percentiles

Improving the performance

Improving the performance with caching
Improving the performance with distributed systems
Microservices
Improving the performance using asynchronous communication
(queues)

Improving the performance using asynchronous programming

Objectives
By the end of this chapter, we should have a good idea of what elements
impact application performance. We will define effective ways to measure the
performance to have a good baseline of our application’s metrics. Also, we will
explore some techniques to address some of the most common performance
bottlenecks.

We will discuss asynchronous programming and its benefits. We will also
describe why and how we use distributed architectures to deal with data-
intensive applications and how these applications vary from more basic
architectures.

Measuring to improve the performance
Ask any optimization expert, and they will tell you that the only way to
improve performance in an application is by first measuring the factors that
affect it. It is simply impossible to improve the performance of an application
when we do not even know what parts of the system need to be improved (if
any).
Performance is not a single number we can measure. A large part of
performance depends on what users are experiencing. For instance, if a
database takes many seconds to execute a query, we may be tempted to
consider it a performance problem. Nevertheless, we expect some queries to be
relatively slow for some data-intensive applications. If we put appropriate
measures like caching in place, the overall user experience may be good
enough, and the query may be left as it is. This situation does not mean there is
no room for improvement, just that the performance as a whole is a result of
multiple factors.
Even if the user experience is subjective, we need objective data to determine
if an application is performant. Performance is centered on the response time
for live applications like web applications or API services. The response time
is the time it takes since a user performs an action until they receive a response
from the application.
We can measure response times for many things in an application. We can
measure the time it takes since a client sends a request until they get a response
from the server; we can measure the time a function takes to complete, a
database to return the results of a query, or an external service to return
requested data.
From all the things we can measure, how do we know what factors better
represent the overall application performance? It depends on the business case.
It can be just a subset of critical actions, or it can be all actions. Since each part
of the application evolves at a different pace, it is essential to keep track of the
response time for each element in the application independently.

For instance, a web application can have multiple pages, and each page can
have multiple modules. Each page and module can regress independently from
the rest, resulting in a poor user experience even when most of the other
modules perform correctly. The main takeaway is no single number can
describe an application’s performance.

Synthetic testing versus RUM
Let us revisit the Pizza Place application we have discussed throughout this
book. We can take one module or action in the application (something our
users care about) and measure it. An example can be the load of the
chronological list of orders for one of our members. We need to ensure a low
response time when users request their list of orders.
Since we are diligent developers, we add “instrumentation” code to the orders
request handler to measure the response time. This response time includes
sending the request to the back-end server, querying the database, parsing the
results, and returning a JSON with the response.
How do we measure time? In the most straightforward approach:

We capture the time before we execute the function to be measured
We capture the time after the measured function completes
We log the difference.

The following code example shows this process:

1. app.get(“/orders”, (req, res) => {
2.
3. // measure time before:
4. let start = (new Date()).getTime()
5. const orders = pizzaService.getOrders();
6.
7. // measure time after:
8. let end = (new Date()).getTime()
9.

10. // get the difference:
11. console.log(end - start, “ ms”)

12. res.json(orders);
13. });

We now can start the server, make a request to the /orders API endpoint, and
in the server’s standard output, we will see the time in milliseconds it took the
getMenu() function to complete.

Note: The instrumentation code used in the example is the simplest way
to measure how long the code takes to complete. However, when we build
production-level applications, this code may lack features like capturing
and parsing relevant information about the request.
There are more robust ways of measuring response times in tools
provided by some programming languages or frameworks. For instance,
NodeJS provides a Performance API (more details in the References
section) dedicated to recollecting the execution time and memory usage
metrics.
When dedicated tools are available, we should prefer those to implement
our own instrumentation code.

Pause for a second to consider this question: Is this the real-time it takes to
render the menu? There are multiple considerations we need to make to answer
this question:

We only measure the response time for the getOrders() function. This
measurement does not include the time it takes for the request to get to
the server, the time it takes to serialize the response, and the time it takes
to get the response back to the user. It also does not cover the time other
service calls take.
The response time will heavily depend on the number of records
available for getOrders() to return, and this number may not remain
constant in time. In this example, we expect the number of elements in
the orders list to remain more or less the same from one request to the
next, but other functions may return a significantly different amount of
data from one request to the next.
The response time may also be different from one user to another. Some
users may have just one order, while others may have tens or hundreds.
Users with high engagement can have magnitudes more data than the
average user.

It would be easier to gauge how the response time changes from one version of
the application to the next and detect regressions or improvements if we could
take out some of this randomness from our measurements.
We call it synthetic testing when we run the application in an isolated
development or test the environment to collect performance metrics using the
instrumentation code. The advantage of synthetic testing is that a controlled
environment gives repeatable results, reducing the variability of external
factors.
Synthetic testing is helpful for:

Regression testing: Finding if parts of the application have better or
worse response times due to code or configuration changes.
CI/CD validation: To stop deployments that significantly increase
measure response times, reducing performance.
Benchmarking different function implementations or versions of
libraries.

With all its advantages, synthetic testing cannot escape the fact that the factors
we chose to ignore by measuring the response time in a controlled environment
matter for the user-perceived performance. Things like network latency will
always be present in production environments. Synthetic tests are helpful in
understanding how individual parts of the application behave. However, they
cannot represent the accurate response times users see in our application.
A request’s time in network traffic is almost impossible to be accurately
measured in a synthetic environment. For instance, the network time will be
significantly different for a user near the data center hosting the server than
from a user on the other side of the world. A request goes through DNS
resolution or proxies redirection, which varies from request to request. Each
part of the network can be slow or fail, causing the network to redirect traffic
or retry requests. There is a chance that all numbers look good on synthetic
testing, and still, users can have a sub-optimal experience due to network
latency alone.
In addition to synthetic testing, we need to measure response times directly at
the client in a production setting, making actual requests. Figure 10.1 reflects
the differences between measuring code and measuring requests on the client-
side:

Figure 10.1: Complete flow, starting with a user request and ending with the user receiving a response

When we measure performance directly in the user’s context instead of doing
it in a controlled, development, or test environment, we call it Real User
Monitoring (RUM).
RUM metrics are the closest thing we have to capturing the real-user
experience. They provide real-time insights into the performance of the
measured functions; these insights help us find potential areas of improvement.

Note: Typically, RUM sends real-time performance metrics to a
centralized aggregation service. In Chapter 7, “Handling Errors”, we
used aggregation services to centralize logs. Since we can consider
performance metrics as a particular type of log, aggregation of response
times follows a similar pattern.
However, unlike text-based log entries, RUM records are aggregated into
hourly, daily, weekly, or monthly statistics, providing time-series data
about the application performance.

RUM metrics can be captured in multiple places:

Measure response time directly in the client. We can measure the overall
request-response time directly in the browser or mobile app, getting
latency numbers on the overall performance for specific actions.
Measure latency for individual functions or services. We can leverage the
instrumentation code we write for synthetic tests to collect real-time

metrics on the application running in production. These metrics will
differ considerably from the results of the instrumentation code on
synthetic tests; instead of giving consistent numbers from one test
execution to the next, RUM data will provide a statistical distribution
over the latency experienced by real users.

We can correlate these two metrics to find potential areas of improvement: If
the response time for a given request is higher than expected, the instrumented
code gives us insight into which parts we could fine-tune to reduce the overall
request time.
So, which one should we use, synthetic testing or RUM? They are not
exclusive from each other. We can use both to get a bigger picture of response
times across each part of our application.
This combination gives us an insight into which part of the requests could
require improvements: network traffic, serializing requests and responses,
database queries, and subsequent requests to external systems, among other
operations which contribute to the total response time.
For instance, if requests to a specific endpoint show regression in RUM
metrics but not in synthetic testing, there is a big chance the regression is
caused by elements external to the application.

Using percentiles
Measuring is comparing. We can only understand an application’s performance
when we have a baseline to compare our measurements. This baseline is the
ideal and realistic response time we aim to achieve. We can affirm that the
application is performant if it remains close (or below) to the baseline.
If the response time increases beyond the baseline, we know we have regressed
and need to improve the application’s performance. If the response time is
lower than the baseline, we know we have improved, and it’s time to set a new
baseline.
To calculate an effective baseline, we need to consider user perception. When
we execute an action such as loading a webpage or clicking on a button,
humans expect a reaction between 100 and 1000 milliseconds. We lose the
user’s attention when an action takes longer than a second to complete. We
should aim to complete user requests in under a second to avoid losing user
engagement.

As we start collecting response times from our users, we will see an interesting
phenomenon: Response times vary for the same user, even between
consecutive and identical requests. We can see this in any application: Make
the same request multiple times, and we will find that each response time
varies, even if just a little. Network latency, which is out of our control, is the
cause of most of this variation. Another cause of (positive) variation can be
caching, which reduces the response time for consecutive requests after the
first one.
Figure 10.2 shows a hypothetical sample of 100 user requests for the same
action. We can see that most take under one second, but some take as long as
10 seconds. This sample is typical: Some users are on slow networks or using
low-range devices and may experience longer response times.

Figure 10.2: A hypothetical sample of the response time for 100 user requests

When we get different numbers for the response time, which one should we
compare with our baseline? We cannot use the best (0.016 seconds in Figure
10.2) or the worst (10 seconds in the example) times because they are likely to
be outliers: one-off values caused by particular circumstances; they are not
representative of the typical user experience. The average is not helpful either;
for example, in Figure 10.2, the average is 6.5, which does not represent the
typical response time either.
A better approach is to split the requests into percentiles. For instance, if we
sort all the response times, the lowest 50% of these requests (also known as
p50) are complete in 0.53 seconds or less. This number means that, at worst,
half of the requests take half a second to complete. The other half takes
between 0.54 seconds and 10 seconds to complete. The lowest 90% of the

requests (or p90) take 0.88 seconds or less to complete, and p99 takes 4
seconds or less.
If we focus on improving the performance for p90 or p99 or even p99.99, we
can safely ignore outliers likely caused by factors out of our control. How
many of these outliers we can ignore depend on factors like how many user
requests we get on average, how large our application is, and how critical
would it be for us if 0.001% of users had a bad user experience.
Percentiles help us find a baseline: For instance, our baseline can keep requests
in p80 under one second and p99 under two seconds. These numbers are just
an example: they can be any other realistic goal that makes sense for our
business case.
To accurately calculate our percentiles, we define a sliding window of a given
time (a week, for instance) and calculate our percentile metrics using all
captured response times inside that window. As time moves and we get new
requests, we update the response time for each percentile.
We cannot create an accurate baseline without measuring first. Instrumenting
code (adding code to measure performance) and measuring the total response
time at the client will provide us with an initial baseline that may not be close
to the one-second-per-request goal, but it will help us identify opportunity
areas. Let us reiterate this: we cannot start improving the performance until we
identify opportunity areas through measurements.

Improving the performance
We have multiple approaches to improve the application performance. Some of
these approaches are easy to implement preemptively; others require
considerable effort and should only be considered once we find opportunity
areas through measurement. This section will review multiple practices aimed
to improve the application performance.

Improving the performance with caching
Caching is the most common change we can introduce to an application to
increase the performance. Chapter 4, End-to-end Data Management, briefly
discussed using in-memory data structures and distributed in-memory
databases as caching layers. Let us expand into the role cache plays in
improving the application performance.

A cache is a fast-access storage layer between the server and a data source (a
database or an external service). Typically, these data sources take a relatively
long time to produce a response. If we were to consume them directly, we
would see a negative impact in the response time for the average request,
especially as multiple calls to external services are required for completing a
single user request.
Since the cache stores data in the local memory, accessing data is faster than
fetching it from external data sources. We will reduce the overall response time
by retrieving the data from the cache instead of querying the external data
source. Figure 10.3 shows the flow a request follows when using a cache layer:

Figure 10.3: The flow for a read request that has a cache layer in front of the database

The cache storage has space restrictions due to its in-memory nature. We
cannot dump a whole database into the cache, so most work around the cache
design consists of working around these limitations.

Note: Memoization
A cache is not always configured as an external product or service.
Caching can be done at multiple layers, and the simplest example of this
is memoization.

Memoization stores the results of potentially slow functions in a data
structure. The function then reuses these results when the function gets
called again.
Imagine a slow function called “doSomethingSlow”, which receives an
integer as a parameter and returns a string. The following is the code
definition for that function:

Public String doSomethingSlow(int number) { … }

doSomethingSlow(32); // takes 10 seconds

doSomethingSlow(32); // takes 10 seconds

Also imagine that, for some unknown reason, each call to this function
takes 10 seconds.
This function is pure: It will always return the same string value (with
no side effects) for the same input number. Thanks to this property, we
can cache the result after the function is called for the first time:

Map<Integer, String> cache;

public String doSomethingButFast(Integer number) {

 if (!cache.hasKey(number)) {

 String result = doSomethingSlow(number);

 cache.put(number, result);

 }

 return cache.get(number);

}

doSomenthingButFast(32); // takes 10 seconds

doSomenthingButFast(32); // takes less than a second

The first call will be slow because the “doSomethingSlow” function is
called but the subsequent function calls using the same parameters will
be served from the in-memory hash map, considerably reducing
response times. We call this caching pattern “cache-aside”.
Memoization is a powerful tool to increase the performance of our
algorithms.

Defining reading and writing load

Before we define the most common caching strategies, we need to talk about
the specific needs of applications.
We can classify all actions performed in a software application into two
categories: read and write. Fetching a web page, querying a database, and
querying an external service, all are examples of read operations. Creating or
updating a record in a database or uploading a file are examples of write
operations.
Some applications perform more than one type of operation than the other. A
static web application that extracts data from multiple databases (like a
complex WordPress site) will be read-heavy. At the same time, a chat
application or a log aggregation service will be write-heavy. Most applications
balance both types of operations, but one will always be more prevalent. Each
of these types of applications will have distinct caching requirements and
strategies.
Think of your application. If we log all requests to the application and classify
them as either read or write, which one has a higher count? This question will
inform us of effective ways to implement a cache layer.

Cache patterns
A good cache strategy allows the application to “hit” the cache as much as
possible. The goal would be to have all read requests return data from the
cache instead of a slower data source, but this is neither easy nor necessary to
achieve in some cases.
Depending on the characteristics of our application, we fine-tune the cache
layer to balance out getting the most cache hits while keeping the budget and
complexity down.
Before we discuss cache patterns, let us get some terminology out of the way.
When we talk about a “data source”, we refer to a database, an external
service, or any other source of information that can be queried and may (or
may not) be slow to provide a query response.
When we talk about “data records” or just records, we talk about data that can
be uniquely identified through one or more of its attributes. A data record can
be

A database record that is identified through an ID
The result of a function that can be identified by its input parameters.

Caches often take the shape of a key-value store (like a HashMap) that allows
us to check the existence of records through the unique key.
One last thing! This section will assume that reading from a data source is
slow, but only because it is slower than the cache. Reading from a data source
can objectively fast (in the range of milliseconds), but it will still be slow
relative to reading from the cache.
Remember that accessing data sources can have overhead, especially around
network latency: The server may be on a different continent and network
traffic alone can contribute for most of performance problems.

Cache-aside and read-through cache
With cache-aside, the application checks the cache directly for the requested
record during a read operation. There are two options:

If the cache contains the record, the application retrieves it and returns it
to the client.
If the cache does not contain the record, the application queries the data
source, updates the cache, and returns the record.

The application performs each step in this flow, independently communicating
with both the cache and the data source. The flow was displayed in Figure
10.3.
A similar strategy is read-through, where the application only reads the cache
and not the data source; the cache is in charge of fetching the record from the
data source if the record does not exist in the cache. Figure 10.4 shows the
requests’ flow when using this pattern:

Figure 10.4: Request flow for the read-through cache strategy

Both cache-aside and read-through cache perform the same steps; the
difference is that in cache-aside, the application is in charge of updating the
cache, while in the read-through strategy, the cache works as a proxy to the

data source, and the cache takes care of updating itself when the record is
missing.
The advantage of cache-aside over read-through is that the application can still
operate if the cache is down, while with read-through, the code which calls the
cache would have to provide a pass-through call to the data source if the cache
service is down. On the other side, cache-aside is slightly more prone to bugs,
as the developer is in charge of managing and updating the cache through the
application code.
Due to the nature of both these strategies, the first time the application requests
a record will always be a cache miss: The cache is empty until the application
starts reading data.
We can avoid some of these cache misses by warming up the cache: We
directly request records so they can be cached before users start making their
own requests. Since we cannot warm the cache for all records, we only do so
for a set of records that we think are highly likely to be requested by users.

Caching write-heavy applications
Some applications will see little gain from using read-through or read-aside
caches. Some examples of such applications are:

Applications where most records are only read once. For instance, an API
that reads hourly data from weather sensors will rarely read the same
record more than once, resulting in most read operations being cache
misses.
Applications that mostly do write operations.

Now that we talk about write operations, it’s a good time to ask: What happens
when a cached record is updated in the data source? What should we do with
the cached version of the updated record? We have multiple options here:

Use a time-to-live (TTL).
Update the cache when the record is modified in the data source (update-
on-write).

The time-to-live (TTL) is the longest time a record will be kept in the cache.
After a record reaches the end of its TTL, it will be fetched again from the data
source on the next read operation (for example, update-on-read). However, if

the cached record is modified in the data source, the cache will not update the
record until the TTL is done.
Using a TTL works when returning slightly outdated data is not a problem.
TTL-based caching works fine for data that rarely changes or whose changes
are not time-sensitive. For instance, users of an application that allows people
to see videos of birds in distinct geographic locations would be fine if they
don’t see the latest uploaded video for a few hours.
For the second option (update-on-write) we can introduce two other common
caching strategies: write-through cache and write-behind cache.

Write-through cache
When a “write” operation arrives, the application writes directly to the cache.
The cache then blocks the execution until it finishes writing in the underlying
data source. When the write is complete in both the cache and the data store,
the cache successfully returns execution to the application. Figure 10.5 shows
the flow a request follows in a write-through cache:

Figure 10.5: Request flow for the write-through cache strategy

In most cases, combining the read-through and write-through strategies will
keep the cached records up to date. In addition, write-through caches can
reduce the amount of cache warming we need to do to populate the cache with
data.
One thing to consider is that, just as read operations can be slow on external
data sources, write operations can be time-consuming too (for instance, think
of transactions in relational databases). With the write-through cache, write
operations are still slow as the execution pauses until the cache updates the
data source. If, in addition to optimizing the read performance, we need to
optimize the write performance, we can use write-behind caching.

Write-behind cache
In this strategy, the application writes directly to the cache and the cache is still
in charge of propagating the “write” operation to the data source.
What makes write-behind different is that the data source is updated
asynchronously. As soon as the data is written in the cache, execution returns
to the application immediately. The cache will update the data source in
parallel, and the application will not wait for it to finish. Figure 10.6 shows the
flow of this cache strategy:

Figure 10.6: Request flow for the write-through cache strategy

Internally, the cache keeps a queue of all non-persisted records where the cache
inserts new write operations. One by one, these writes will be asynchronously
propagated to the data source.
Since the application does not have to wait for the slow data source, write
operations are sped up considerably. Both reads and writes are performed in
the cache directly, keeping the cache updated.

Choosing the right caching strategy
The limited space provided by the caching layer forces us, developers, to
analyze our application behavior before choosing a caching strategy. Some
caching strategies like write-through or write-behind will make performance
worst for some specific use cases.
For instance, imagine an application where most write operations are
performed on the data source “A” and most read operations are done on the
data source “B”.
In this case, caching each write operation will not improve the performance:
The cache will be full of data from “A”, and each read operation will be a
cache miss. Then, we will need to delete data from the cache to make space for
“B” records. Figure 10.7 captures this scenario:

Figure 10.7: Poor performance caused by most “read” operations resulting in cache evictions

Not only the application has to read and write data to the data source directly,
but it also has to update the cache at each operation. The application will
perform better if we drop the cache layer altogether.
In these complex scenarios, we must design a more nuanced cached strategy.
We use the caching strategies discussed in this chapter to design a custom
strategy that works well within our application’s context.

Eviction policy
Given the limited size of the caching layer, at some point, the cache will run
out of space. If we want to keep the cache in sync with the most up-to-date
data in the data source, we must delete or evict records from the cache.
Ideally the cache should contain data that is likely to be requested in the future.
For instance, a record that was just read or written has a high probability of
being read again. We must keep this in mind when we decide what records to
evict. Evicting data from the cache is critical to keep it performant.
However, we need to reduce the number of cache evictions for two reasons:

Evictions add application overhead. The cache has to choose a record to
evict, delete it, and insert the new record. Each of these operations adds
application cycles.

Evictions often follow cache misses. Cache hits rarely require updating
the cache contents.

An eviction policy is a strategy we use to decide what records to remove from
the cache when we need to make space for more records.
Simple eviction policies are:

First-in-first-out (FIFO): Evict the oldest record in a queue
Last-in-First-Out (LIFO): Evict the record at the top of a stack
Random Replacement (RR): Randomly pick an element to evict.

The advantage of these policies is that they are simple and perform pretty well.
However, these policies do not consider how often a record is accessed.
Evicting a “popular” record will guarantee that the record will soon be added
back to the cache, resulting in tons of cache misses in the process.
The most popular cache strategy is least-recently-used (LRU), where, as its
name indicates, the least recently used item is evicted first. This strategy
prioritizes records that have been recently accessed, keeping them in the cache
longer under the assumption that they will probably be used again soon.
Another strategy is least-frequently used (LFU), where instead of keeping
track of when a record was read, we keep track of how many times the cached
record has been accessed. LFU prioritizes records that are often read, even if
they have not been used in a while.
Variations of these strategies exist. Some keep track of extra attributes like
how long the record has been on the cache or how important a record is under
business rules (for example, don’t evict critical business records). Each
approach aims to model different types of data behavior in an application.
Finding the right combination of caching and eviction strategies requires effort,
but in the end, it is worth it: caches reduce response times by using faster
storage and keeping data close to the user.

Other caching tools: Proxies and CDNs
Not all caching strategies involve in-memory data structures or services. Some
caching tools can be remote services outside the application, but they reduce
the overhead of common performance problems like network latency.
Most web applications take advantage of two common caching mechanisms:
Proxies and CDNs.

Proxies are servers that sit in between the remote server and the client.
Network traffic is redirected through the proxy; the proxy can cache requests
so, the next time the client makes the same request, the proxy can directly
return the cached response.
CDN (Content Delivery Network) are storage servers that keep a copy of static
resources like images and text-based files like HTML, CSS, and JavaScript.
CDNs are distributed around different geographic locations; when the client
requests static resources, it can choose the CDN that is geographically closest
to it, reducing network latency.
Both proxies and CDNs address the problem of network latency: They reduce
the distance a network request has to travel to be fulfilled.
A good thing to notice here is that proxies and CDNs don’t necessarily store
cached data on in-memory storage. Even if they store data on disk (as the
remote server would), they can still serve requests faster due to being located
closest to the user.

Use case: Caching long-running operations with Redis
A popular caching service is Redis. As mentioned in Chapter 4, End-to-end
Data Management, Redis is an in-memory database that provides fast read and
write operations.
While it is common for development teams to host their own server instances
of Redis in standalone servers, cloud providers like AWS offer services like
ElastiCache, which are managed Redis servers that can scale as the demand
grows. These managed services help development teams to avoid the work of
managing and scaling the servers themselves.
Most modern programming languages offer libraries that can connect with
Redis. For instance, Java has the open-source libraries Jedis and Redisson. In
this section, we will see how we can integrate Redis into our Java application
to cache the results of potentially slow operations.

Using Jedis
Once Jedis has been added as a dependency to our project, we can connect to a
Redis server as follows:

1. JedisPooled jedis = new JedisPooled(“localhost”, 6379);

In this example, we connect to a Redis instance running in our development
computer. We use the JedisPooled object to create a pooled connection to the
Redis server. Using a pool of connections is a thread-safe way of integrating
with Redis, as the connection can be safely returned to the pool once a client
finishes with it.
Once we have a connection object, we can start adding data to the cache. The
simplest data structure in Redis is a string. The following line of code adds a
string with the value john.doe to Redis under the loggedInUser key:

1. jedis.sadd(“loggedInUser”, “john.doe”);

In our application, we would be dealing with more complex data structures.
Instead of storing strings, we can store data structures like hash maps using the
hmset function:

1. public void createUser(User user){
2. Map<String, String> loggedUser = new HashMap<String, String>

();

3. loggedUser.put(“username”, user.getUsername());
4. loggedUser.put(“email”, user.getEmail());
5.
6. jedis.hmset(“user:” + user.getUsername(), loggedUser);
7. }

Retrieving the record from the cache is just as straightforward:

1. public User getUser(String username){
2. Map<String, String> userMap = jedis.hgetAll(“user:” +

username);

3. User loggedUser = new User();
4. loggedUser.setUsername(userMap.get(“username”));
5. loggedUser.setEmail(userMap.get(“email”));
6. return loggedUser;
7. }

Jedis is a good library for implementing a cache-aside strategy. However, if we
want to implement a more advanced caching strategy, we should look for
another library.

Using Redisson
Redisson, a Java library that provides a more advanced toolset. We will use it
to implement a read-through cache.
For this example, our read-through cache will read user data from an SQL
database where the username attribute is the primary key. The cache service
will only query the database if the user record does not exist in the cache
storage.
First, we connect to the Redis server:

1. Config config = new Config();
2. config.useSingleServer()
3. .setAddress(“redis://localhost:6379”);
4. RedissonClient client = Redisson.create(config);

Notice that we use the same server URL we configured in Jedis. We use the
Redisson -provided Config class to provide the connection configuration. For
a production setting, Redisson allows us to use configuration files to declare all
connection details.
The first step to implementing a read-through cache with Redisson is to define
a MapLoader. The MapLoader is a Redisson interface that defines two
functions: loadAllKeys and load. The load function contains the code to
execute the SQL query we expect the cache to perform after a cache miss:

1. MapLoader<String, User> mapLoader = new MapLoader<String,

String>() {

2.
3. @Override
4. public Iterable<String> loadAllKeys() {
5. List<String> list = new ArrayList<String>();
6. Statement statement = conn.createStatement();
7. try {
8. ResultSet result = statement.executeQuery(“SELECT

username FROM users”);

9. while (result.next()) {
10. list.add(result.getString(1));

11. }
12. } finally {
13. statement.close();
14. }
15.
16. return list;
17. }
18.
19. @Override
20. public User load(String key) {
21. PreparedStatement preparedStatement =

conn.prepareStatement(“SELECT username, email FROM user where

username = ?”);

22. try {
23. preparedStatement.setString(1, key);
24. ResultSet result =

preparedStatement.executeQuery();

25. if (result.next()) {
26. User user = new User();
27. user.setUsername(result.getString(1));
28. user.setEmail(result.getString(2));
29. return user;
30. }
31. return null;
32. } finally {
33. preparedStatement.close();
34. }
35. }
36. };

Using the MapLoader class, Redisson will create an instance of a cached
hashmap:

1. MapOptions<String, User> options = MapOptions.

<String,User>defaults()

2. .loader(mapLoader);
3.
4. RMapCache<String, User> cachedMap =

redisson.getMapCache(“test”, options);

The application will use the cachedMap object to access the users’ data
directly:

1. User currentUser = cachedMap.get(“john.doe”);

If the user with the username john.doe does not exist in the cache, the
MapLoader function load will be called, the SQL database will be queried, and
a new User object will be added to the cached hashmap. Next time the
application tries to retrieve the same user, the cache will return the instance
stored in memory.
As we can see from the example, implementing a read-through cache with
Redis and Java’s library Redisson is pretty straightforward. We have included
Redisson’s documentation in this chapter’s Resources section. It provides code
examples for implementing other advanced caching strategies.

Improving the performance with distributed
systems
We can tie most common performance problems to two causes: network
latency and memory management.
As we have discussed, network issues cannot be avoided, only mitigated. An
effective way to reduce the impact of network latency is to put the server as
close to your users as possible. Fewer network jumps and redirections are
needed when a server is geographically close to its clients. Unfortunately,
when everyone in the world has access to your application, there is only so
much you can do with a single server to get close to your users.
As our application’s traffic surges, so will our server’s demand for memory. A
single server can be vertically scaled, but it has a limit. After the server hits
that memory limit, it will no longer be able to serve all the extra requests
clients send to it.

Fortunately, we can address network latency and memory usage challenges
with the same approach: Distribute the application to two or more servers.
From the point of view of network latency, using multiple servers enable us to
put servers closer to where most of our clients are. On a scale where at one end
we have one single server at a considerable distance from most clients, and at
the other end, we have one server next to each client, we can find the sweet
spot somewhere in between. Cloud providers like Amazon Web Services use
the concept of regions and availability zones: geographic areas where we can
put multiple servers and be close to users.

Note: Regions and availability zones have multiple benefits. By
distributing multiple servers into different regions, our application gains
availability assurances if one or multiple regions go offline.

From the point of view of memory management, using multiple servers allows
us to distribute our client requests. Since each server receives only a part of all
requests, the server’s memory usage will be lower than when a single server
had to dispatch responses for all requests.
It is easy to get lost when we first start exploring distributed architectures.
There are large gaps between the mental model of writing a single-server
application and the mental model of designing a multi-server, distributed
application.
Distributed applications improve the performance by partitioning data, which
means splitting data into multiple servers. The two most common ways in
which data is partitioned are:

Through replication: Create multiple copies of our data, one on each
server. If we can guarantee that each server holds a fully up-to-date copy
of our data, clients can make requests to any server but usually, to the
server closest to them distributing all traffic. Figure 10.8 shows three
replicas of the same database instances. Examples of distributed
applications that follow this pattern are: Web servers each with an
identical copy of the hosted website behind a load balancer. Content
Distribution Network (CDN): Multiple servers that host static resources
like CSS, JS, and HTML.

Figure 10.8: For replication, each server hosts a copy of the data

Through sharding: Keep a single copy of our data, but distribute it
across multiple servers. A shard is a server that only contains a subset of
all data. Since each server only holds a part of the data, client requests
will be distributed and redirected to the respective servers, reducing each
node’s load. Figure 10.9 shows three shards, each hosting one part of the
data:

Figure 10.9: For sharding, each server hosts only a part of the data

Both strategies are not mutually exclusive. We can have a hybrid approach
where we both replicate and shard our data across multiple servers.
The two biggest challenges while designing a distributed application are:

Keeping data consistent across partitions.
Enable integration and communication between each server in the
application.

If we can solve these two challenges, the remaining design work is not too
different from designing single-server applications.

Keeping data consistency
As discussed in Chapter 4, End-to-end Data Management, we start having
consistency challenges as soon as we keep multiple copies of data. There is no
problem when applications are static: We can create as many copies as we
want, without any special considerations. But, as soon as we need to support
data updates, keeping consistency becomes a challenge.

Data consistency in replicas
Assume we have three replicas of a database. Each database is a perfect copy
of the other. We can allow clients to query any of the replicas without a
problem because they will all return the same results. No inconsistencies.
However, things get interesting when we start allowing clients to create,
update, or delete records in the database.
For enabling updates, let us start from what may seem the simplest approach
(although, as we will see soon, this is actually the most complex scenario):
Allow clients to send update requests to any replica.
Imagine a client creates a record in “Replica 1”. Now, all clients querying
replicas 2 and 3 will get out-of-date query results. So, the application needs to
propagate the update by adding a new record to the other replicas. As soon as
replicas 2 and 3 have the new record, queries will be consistent again.
What happens if one client updates record number 12 in “Replica 1”, but at the
same time, another client deletes the same record (number 12) in “Replica 2”?
We may feel tempted with giving priority to the update that was performed
first. This approach has a few challenges:
Figuring out which request finished first is hard. Each server’s internal clock
may be out of sync.

How do you determine which request finished first if the clock
inconsistencies are in the range of milliseconds?

One of the two updates will be lost. If this is a critical operation, like a
bank transaction, lost updates can have serious consequences, like
financial losses.
Conflicts are detected too late. Each replica will try to propagate its
respective updates immediately. The conflict will only be detected when
one of the conflicting replicas tries to propagate its update to the other,
and by then, other replicas may have been propagated already, making
conflict resolution even harder.

Even if we configure our replicas to solve conflicts automatically, the whole
process takes time. In the meantime, users will see inconsistent results.
Merging asynchronous conflicts is hard. In Chapter 9, Deploying Applications,
we saw that Git requires developers to merge conflicts manually. However,
applications may not have the luxury of having a human resolve each
conflicting update, especially if we start getting hundreds of conflicts per
second.
Of course, there are more efficient ways to deal with update conflicts
automatically. Conflict resolution is a fairly advanced topic and is out of this
book’s scope. Many resources (and whole books) are dedicated to this field; if
you are interested in the topic, you should check them out.
Since enabling clients to update any replica is difficult, let us explore alternate
approaches. For instance, we can send all update operations to a single replica.

Multiple read replicas, single write replica
Sending all update operations to a single replica is not a new idea. Back in
Chapter 4, End-to-end Data Management, we discussed having a source of
truth: A single copy of the data that is always up-to-date and can be used to
create other copies. By assigning the role of write replica to a single server
(and read replica to the rest), conflicts are easier to manage. The write replica
can resolve all conflicts before propagating the changes to the read replicas.
Of course, this simplified approach also has its own trade-offs. Since all update
requests will be redirected to the write replica, its load and memory usage will
increase. This may not be an issue if the application is read-intensive, but
write-intensive applications will struggle to keep acceptable performance
levels.
Again, hybrid approaches can help here. Instead of having a single write
replica, we can have two or three. It is slightly less complicated to implement

automatic advanced conflict resolution strategies in two replicas than to do so
in all.
Cluster management has more complexities that are out of the scope of this
book: What happens when the single write replica fails? How does the cluster
select what replica to promote to replace the failed node? What happens with
pending write operations? We have added a link titled “Leader and followers”
in the resources list for this chapter to follow up in all these questions.
In the end, the strategies we have to implement to keep data consistent across
multiple replicas depend on the data demands of our application. Most
applications can perform well with a single-write-replica, multiple-read-
replicas approach.

Eventual consistency versus strong consistency
When data is written or updated in a distributed database, it may take time for
all the replicas to be updated. This time can be in the range of milliseconds to
minutes. On top of this, the propagation can fail if one or more of the replicas
are down.
While write operations are propagated, database replicas that are not yet
updated could receive read and write requests, bringing the risk of users
operating on outdated data, which in turn can cause conflicts in future write
operations.
To prevent data conflicts caused by the replication lag during write operations,
we have the following two options:

Strong consistency: Wait until all replicas are updated before confirming
to the user that the write was successful. We can lock all write operations
done for the given record in all replicas until replication finishes. The
data introduced by the write operation will not be visible in any replica
until the replication is complete; meanwhile, we will return the
unmodified version of the data for all read requests (but writes will be
blocked until progpagation completes).
Eventual consistency: Confirm to the user that the write was successful
as soon as the first replica is updated. Write operations are not blocked.
All servers will return the data they have (updated or not) for read
operations and eventually, all nodes will show the up-to-date data when
the propagation completes. If new write requests are sent before

replication completes, the previous write operation may be overwritten
and lost.

Strong consistency trades off the performance for consistency. Having to
lock all replicas during the propagation reduces the number of requests the
application can serve. An application that does not need strong consistency can
gain performance by relaxing consistency constraints.
We can think of examples of cases for each of the consistency models. A bank
application needs strong consistency, as it is critical to always show the most
up-to-date data about the users’ accounts; and updates should only be
displayed once the application is certain the write operation was successfully
propagated to all nodes. On the other side, eventual consistency in a bank
application can lead to duplicate money transfers and lost money.
However, a service to post comments on a social network can deal with
inconsistent data for a while by showing an outdated list of comments until the
replication completes. By using eventual consistency, this application will
support more client requests, resulting in increased performance. And if a
comment is overwritten, data loss has a minor negative impact due to the
nature of the application.

Data consistency in sharding
When using sharding alone, data consistency is not as much of a challenge as it
is for maintaining multiple replicas. Since we only keep one single copy of the
data, update operations don’t need to be propagated. The challenge with
sharding is to define a good design that allows the application to fully take
advantage of having multiple servers.
As discussed in the section about caching, not all data is accessed at the same
rate. Some records will be queried more often. This imbalance in operations
may lead to some shards having more traffic load than others. If the imbalance
gets too bad, some shards will have to deal with the majority of client requests,
while others may remain unused.
We can group data in multiple ways. For instance, if we have users from
around the globe, we might group data by country. If requests from each
country are evenly distributed, a good sharding strategy is to create a server per
country.
However, if our assumption is wrong, and we end up in the case where most of
our users reside in the same country, one of the shards will get most of the

traffic, while the others will be wasted. In this case, we will gain no
performance improvements from sharding; we will need to find a better
partition strategy, maybe one based on custom regions.
Defining an effective partition strategy requires us to take a good look at our
application and our data. Data evolves with time, and we might need to add
more partitions to deal with increased traffic. What may be a good partitioning
strategy at the beginning of a project may become an outdated approach later
on.

Microservices
Just as we partitioned and sharded data into multiple servers to increase
performance, we can partition the application itself. Typically, we break the
application into multiple, independent services that we can build and deploy
independently.
Microservices-based applications rely on composability. Instead of building
one single service that performs multiple functions, we build multiple
microservices, each with a single responsibility. Composability brings
flexibility: We can build increasingly complex application flows by integrating
multiple services. As the application evolves, we can add or remove individual
services.
From a technical point of view, each microservice is a full mini-application
with its own server that communicates with other services through well-
defined APIs, sending requests back and forth.
With microservices and distributed systems in general, not only the application
has room to grow. Services themselves can scale or be split as they become
more complex. This flexibility is great for development teams, as they can
work and refactor individual services without redeploying the rest of the
application.
Microservices architectures have multiple benefits:

Enable horizontal scaling: When we shard data into multiple partitions,
we are able to distribute traffic load across multiple servers. When
splitting the application into multiple services distributed across multiple
servers, applications also increase their traffic load capabilities.
Enable parallel collaboration: Since each service can be deployed
independently, development teams can work in parallel without blocking

each other.
Encourage the adoption of better tools: Potentially, we can build each
service using a different tech stack. This flexibility gives us the freedom
to choose the tool that best fits the service task: Use a robust enterprise
stack like Java and Spring for implementing REST endpoints while at the
same time using a Python toolset for Machine Learning services.

Microservices applications are distributed applications. As stated earlier, after
keeping data consistent in a distributed application, the next big challenge is to
enable integration and communication between each microservice in the
application. To fully take advantage of distributed applications’ performance
improvements, we have to support asynchronous communication between
services.

Improving performance using asynchronous
communication (queues)
The traditional client-server architecture follows a synchronous
communication model: The client makes a request and waits for the server to
return a response.
Synchronous communication is also possible when integrating multiple
services in a distributed application: Service “A” makes a request to services
“B” and “C”, and waits for them to process the request and return a response.
However, it can be challenging to maintain response times low when using
synchronous communication.
Actually, it is impossible to provide synchronous response times under a
satisfactory baseline for some scenarios:

An application that allows users to upload large files will take time to
fetch, process, and store a new file.
An application storing data in a large, distributed database may need time
to propagate the changes to all its replicas. Some requests can take
minutes in the worst-case scenario where the database is not correctly
optimized.
An application that depends on an external service that allows a limited
number of concurrent connections will require currently running
operations to complete before accepting new requests.

When requests take long, we cannot force users to sit idle waiting for the
operation to complete. For those cases, we use asynchronous
communication.
Asynchronous communication between services does not follow a traditional
request-response flow; instead, it provides a communication channel where
services produce and consume requests at different rates. Services do not wait
for responses to their requests, as they may take a long time to receive a
response.
If we pay attention, we can see this communication channel follows a publish-
subscribe (Pub-sub) architecture. Services can subscribe to a communication
channel; then, other services can publish requests to the channel, and any
subscribed services will be able to consume those requests. If subscribed
services need to produce a response, they can send it through a different
channel. The key here is that no service has to wait for others to respond.
In its most common implementation, this channel behaves like a queue. More
precisely, this channel is an application queue.
An application queue is a transient storage service that sits in between two or
more services trying to communicate with each other, as shown in Figure
10.10:

Figure 10.10: The service queue allow multiple services to communicate

The storage provided by the queue is what enables asynchronous
communication: Services can send a request and, once it is successfully added
to the queue, assume that it will be delivered to the adequate services.
Asynchronous services unblock client requests. When a client sends a request,
the API server may send a response to the client as soon as it confirms that the
request was successfully put in the queue. The response may indicate that the

request is being processed and that the user will be notified as soon as a
response is available.
Sending an “in-progress” message back to the client may not seem the best
user experience, but it beats forcing the user to wait for a long time.
Once the subscribed services complete processing the request, they may
publish a new request to a separate queue. Then, a service listening to this
second queue can notify the user that the request is complete: For instance, a
server can listen to a channel where a service publishes responses and then
reply a response back to the client through WebSockets or push notifications.
Service queues allow the seamless integration of multiple services into the
same application flow. We can create new services to consume an existing
channel where other services are already listening.
For instance, we can take an existing service queue and create an application
monitoring service that can subscribe to the queue and log relevant
information. Or we can integrate an external system to consume our
application’s information in real-time; all without updating the service that
produces the information.
Queues also provide robustness to the application. If any of the subscribed
services are down, the queue will store the request until the service recovers
and processes it.
In a way, we are cheating to achieve better-perceived performance: We are not
completing the request any faster than in a synchronous request-response
architecture. Nevertheless, we give almost immediate feedback to the user for
a long operation and immediate feedback always makes our users happy.
Some popular examples of service queues are Kafka and RabbitMQ. These
products are used by many high-performant applications to decouple and
integrate application services.

Improving the performance using asynchronous
programming
Let us take a step back from the high-level view of servers and microservices
and back into the low-level view of code.
Some code functions take time to be executed. Functions that make requests to
external systems or queries to databases take longer than other functions

because they depend on added overhead due to network latency and the
availability of external resources.
Since distributed and microservices-based applications split functionality into
multiple services, it is common to make multiple requests to external services
to fulfill one single user request. This can be a performance problem for a
typical sequential code, where we do one operation at a time, as shown in the
following example:

1. // Total request time: ~3 seconds
2. function getOrdersPage(response, userId) {
3.
4. // each of the following operations is blocking:
5. let profile = userService.fetchUserProfile(userId); // 1

second

6. let orders = orderService.fetchUserOrders(userId); // 1

second

7. let account = accountService.fetchAccount(userId); // 1

second

8.
9. response.json({profile, orders, account}); // returns a JSON

10. }

In the preceding example, to fetch all the data needed for the application’s
orders page, we need to retrieve the complete user profile, the user orders, and
account details (payment-related information). The requested data is stored in
separate databases fronted by API services.

Figure 10.11: Sequential requests are slow because each request has to wait for the previous to complete

Figure 10.11 provides a visual representation of the overall execution. When
adding up the times to execute each request sequentially, the total response
time approaches 3 seconds.
We can see in this example that each call to an external service does not
depend on the previous call: We can call each service in any order and still get
the same results. Examples like this are perfect candidates for asynchronous
function calls. Instead of calling one service after the other, we can call them
all simultaneously.

Promises and futures
Most modern programming languages have tools to execute code
asynchronously. While the most common example of async code is multi-
threading, we have other options at a higher level of abstraction.
For instance, Java has the concept of Futures, and JavaScript has Promises. All
these tools share the same underlying principle: they are abstract
representations of the result of asynchronous operations.
We can rewrite the previous JavaScript example using Promises as follows:

1. // Total request time: ~1 second
2. function getOrdersPage(userId) {
3. let profilePromise = new Promise(// 1 second
4. (resolve) =>
5. resolve(userService.fetchUserProfile(userId));
6.);
7. let ordersPromise = new Promise(// 1 second
8. (resolve) =>
9. resolve(orderService.fetchUserOrders(userId));

10.);
11. let accountPromise = new Promise(// 1 second
12. (resolve) =>
13. accountService.fetchAccount(userId));
14.);
15.
16. Promise.all([

17. profilePromise,
18. ordersPromise,
19. accountPromise
20.])
21. .then(([profile, orders, account]) => {
22. // once all service calls complete, return a JSON
23. response.json({profile, orders, account});
24. });
25. }

The function passed to each new promise is executed asynchronously. The
execution will not pause when it reaches fetchUserProfile or fetchAccount.
Only after all requests finish, the server will return a single response with the
requested data.
Figure 10.12 provides a visual representation of the overall execution. Since
we execute all service calls asynchronously, the approximate response time
will be as long as the slowest request, which is around one second for this
example. Using promises, we have achieved a 3x improvement!

Figure 10.12: Using parallel requests, the total response time equals the response time of the longest
sub-request

We can use asynchronous code execution as a regular practice, not just when
we find performance problems. This technique is widely used in projects
where service calls can be parallelized.
What if one of the service calls had a dependency on another? In an
asynchronous paradigm, we can chain async calls:

1. // Total time: 2 seconds
2. let profileAndOrdersPromise = new Promise(
3. (resolve) => resolve(
4. userService.fetchUserProfile(userId)
5.)
6.)
7. .then((userProfile) => new Promise(
8. (resolve) => resolve(
9. orderService.fetchUserOrders(userProfile)

10.)
11.);
12.);

While this example may seem more complex and verbose than executing the
sequential code (and it has the same performance), it showcases that
asynchronous functions have the flexibility to operate both sequentially and
asynchronously. JavaScript even has some syntactic sugar with async-await to
make it look like sequential code calls, while still keeping its async nature:

1. // Total time: 2 seconds
2.
3. // userProfile is not a promise, but the actual value
4. let userProfile = await new Promise(
5. (resolve) => resolve(
6. userService.fetchUserProfile(userId)
7.)
8.);
9.

10. let userOrders = await new Promise(
11. (resolve) => resolve(
12. orderService.fetchUserOrders(userProfile)
13.)
14.);
15.);

The await operator indicates to the application that it should pause the
execution until the async operation completes and returns its value.
Request parallelization can also be achieved in languages like Java. The
following example uses an implementation of the Java Future interface called
CompletableFuture:

1. CompletableFuture<UserProfile> completableFuture =

CompletableFuture

2. .supplyAsync(() ->
3. userService.fetchUserProfile(userId)
4.);

It is common practice to return Promises or Futures from functions that may
take a long time to complete. These utilities allow developers to choose
whether they need to execute these operations asynchronously or sequentially,
while synchronous function calls always force developers to write sequential
code.
As we can see, asynchronous programming has more tools beyond multi-
threading functions. This paradigm requires us to shift the mindset, as
asynchronous code is harder to debug and think about. However, the
performance benefits it brings are well worth it for us to make an effort to
design applications that take full advantage of asynchronous communication.
The key idea behind all these practices is that we should build applications to
do as much work in parallel as possible, while keeping data consistent.

Conclusion
We cannot improve an application’s performance if we don’t measure first.
Implementing premature optimizations often leads to excessive complexity and
multiple bugs.

We cannot measure or represent application performance with a single number.
Each part of an application can perform differently, and the response time for
each needs to be correctly measured and monitored to find improvement
opportunities. Instrumentation code is key to collecting response time metrics
in both synthetic tests and real-user contexts.
Once we get a good idea of the typical user experience for different segments
or percentiles of our users, we can begin establishing response time baselines.
These percentiles are a tangible way to measuring user experience for the
variety of users our application serves.
User research tells us that users tend to give up and abandon our application
after one second of waiting for a response. This knowledge can guide our
performance improvement actions and baseline goals for which we can aim
our efforts.
Caching is an effective way of reducing response times in an application.
Caches keep data in fast storage that we can leverage to fulfill user requests,
instead of always querying data sources that can be potentially slow.
In broader terms, we can evolve our application to use a distributed
architecture to cope with increased traffic loads. We balance the application
load by increasing the number of servers that can serve responses to user
requests.
Distributed applications rely on two concepts to increase performance: Data
replication and data partition. Our job as software developers is to design
applications that can take advantage of these two concepts while keeping data
consistent. This is not a small challenge, but fortunately, proven recipes and
strategies exist that we can leverage while designing a distributed system.
Microservices-based applications rely on breaking an application into multiple
services that we can build, deploy, update, and scale at an independent pace.
While distributing data among different servers help us better cope with
increasing traffic demands, microservices help us create robust applications
that can grow to maintain and improve performance as needed.
The base for any distributed application is asynchronous communication and
integration. Asynchronous services are robust and resilient during failures; and
asynchronous coding allows our applications to fully take advantage of the
distributed architectures we put in place.
In the end, performance is all about user experience. We use all these tools,
strategies, and architectures to provide users with a great experience while

using our application. There is no use in building highly complex applications
if the user experience does not benefit from them.
This chapter is only an introduction to the world of highly-performant
distributed applications. It should be used as a starting point for readers to start
their journey into understanding advanced topics.

Questions
How do we measure performance?
What does the term “p90” mean?
What is “eventual consistency” and when should it be used?
What are examples of distributed systems? Remember that even things
like cellular networks are technically distributed systems.
What is the difference between replication and sharding?

References
NodeJS Performance API: https://nodejs.org/api/perf_hooks.html
Memoization: https://www.geeksforgeeks.org/memoization-1d-2d-
and-3d/
Cache patterns (using AWS ElastiCache):
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-
ug/Strategies.html
Kafka (service queue): https://kafka.apache.org/
Java Jedis: https://github.com/redis/jedis
“Leader and followers”: https://martinfowler.com/articles/patterns-of-
distributed-systems/leader-follower.html
Microservices (in-depth definition):
https://martinfowler.com/articles/microservices.html
Replication and sharding in AWS:
https://www.awsthinkbox.com/blog/replication-and-sharding
“Balancing Strong and Eventual Consistency with Datastore” for GCP:
https://cloud.google.com/datastore/docs/articles/balancing-strong-
and-eventual-consistency-with-google-cloud-datastore

https://nodejs.org/api/perf_hooks.html
https://www.geeksforgeeks.org/memoization-1d-2d-and-3d/
https://kafka.apache.org/
https://github.com/redis/jedis
https://martinfowler.com/articles/patterns-of-distributed-systems/leader-follower.html
https://martinfowler.com/articles/microservices.html
https://www.awsthinkbox.com/blog/replication-and-sharding

JavaScript Promises: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Promise
JavaScript async-await: https://developer.mozilla.org/en-
US/docs/Learn/JavaScript/Asynchronous/Async_await
Java CompletableFuture:
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Compl
etableFuture.html

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Async_await
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

T

CHAPTER 11
Designing a System

here is not a single recipe for building an app. The architecture of a
system depends on multiple elements: User requirements, the project’s

budget, the expected user growth, and so on. In this chapter, we will learn
how to effectively convert our user requirements into a technical design
composed of all the modules we have seen in the previous chapters. This
system design is the blueprint that guides things like what languages, tools,
frameworks, or services we need to choose to build our application.

Structure
At this point in the book, we have broadly described the essential
components used to build back-end applications. We have taken each aspect
of a modern system design, and layer by layer, we have explored the
various tools available to tackle multiple software development challenges.
It is time to take the tools we have discussed, put them in order, and
describe the system design process. In this chapter, we will discuss each
step involved in the system design:

The system design process
Defining and clarifying requirements
Defining the system’s interface.
Defining data models
Calculating the system scale and size.
Creating high-level and low-level designs
Identifying failure points

Objectives

The goal of this chapter is to connect all the knowledge we have acquired in
the previous chapters of this book.
By the end of this chapter, we should have a detailed picture of how all the
components, architectures, and methodologies we discussed so far interact
with each other to produce an actionable system design.

The system design process
The largest software companies in the world have a step in the interview
process for evaluating the candidate’s skills in designing systems;
increasingly, smaller companies too have adopted this process. This module
is especially challenging for inexperienced candidates because the system
design process is so vast and involves so many variables that it seems
almost impossible to effectively design a large application in only one hour.
One thing that makes system design interviews so confusing is that building
an application is an iterative process. Potentially, these iterations have no
end, as user requirements will keep evolving and new business
opportunities emerge.
System design interviews try to assess a developer’s capability to complete
the first iteration of a system design, along with the candidate’s attention to
detail and the candidate’s understanding of the multiple trade-offs that
choosing a specific architecture or tool brings.
The system design process—that first iteration—involves multiple ordered
steps. The goal is for the system designer to understand the system’s
objectives and create an application blueprint that will cover these
objectives as closely as possible under the given constraints (like a limited
budget, technical limitations, and compliance with laws and regulations).
This blueprint will unavoidably evolve once we start building the
application on top of it.

Example: The Pizza Place (at scale)
Across almost every chapter of this book, we have used the Pizza Place
application to illustrate each element of back-end development. Now, it is
time to grow this example to demonstrate the design of a more complex
system.

Going back to the example business case: It’s been three years since we
built PizzaPlaceApp v1.0. The application has worked correctly using a
simple infrastructure consisting of one server for the application and a
second server for the database, as illustrated in Figure 11.1:

Figure 11.1: Steps in the system design process

The Pizza Place has grown beyond anyone’s expectations. New restaurant
locations have been opened across the country, serving thousands of people
daily.
To cope with the fast expansion, each new location chose to install their
own copy of the application: each bought a couple of servers and created a
fresh install. While this approach quickly enabled each restaurant to take
new orders, there have been some downsides: people who already have an
account in one of the location’s application need to create a new account if
they want to order in a different location.
Since users need to have one account per location, their rewards are
similarly fragmented. There is no easy way for the Pizza Place owners to
access order information for all locations. They rely on the managers from
each location to generate reports manually and send them daily through
emails.
Given the recent business success (and their plans to expand
internationally), the owners of Pizza Place reach out to us to re-design their
application to centralize the orders from all locations with fewer budget

limitations this time. We will use this re-design effort as the primary
example to discuss the system design process.

Defining and clarifying requirements
In Chapter 1, Building Multi-user Apps, we discussed the process of
collecting requirements from our users. Having a clear set of requirements
will guide each decision we make during the system design process.
In this step (Figure 11.2), we will ensure all requirements and assumptions
are clear and approved by all stakeholders.

Figure 11.2: Step 1

Requirements allow us to set constraints on the system size and features.
Since designing an application may involve a wide variety of tasks, these
constraints help us filter out architectures, components, and other patterns
that may not be suitable for our use case. If we were to design a house, we
need to define constraints to how big it needs to be. These initial
characteristics will, in turn, help us determine other, more concrete details.
First, we list all known functional requirements, as these will implicitly
(and sometimes explicitly) provide a list of constraints. For Pizza Place v2,
we have the following requirements and use cases:

Users should be able to create one single account in the application
and use it to make orders at any location.
Considering each location can have different food items on its menu,
users should be able to see each location’s menu.
Business owners should be able to fetch daily reports about orders
from a single website. Each report should have order statistics for each
location, each region (each region having multiple locations), and
summarized for all locations.
The rewards program should allow users to order from any location
and accumulate rewards in a single account.

A new feature needs to be added: The application should
automatically order more ingredients from providers when it
calculates that the kitchen is about to run out of them.
Another new feature: Once the order is delivered, we must store a
picture of the order at the doorstep for contact-less delivery. This is for
quality assurance: The business owners can audit whether the order
was delivered correctly, thus improving the user experience.

Given the business’s aggressive expansion plan, we may feel free to define
a couple of non-functional requirements: The application should support a
high traffic load, as it will serve thousands of users across all locations. The
application should be failure resilient. Problems with the application in one
location should not affect other locations. This requirement will allow users
to move locations when they cannot create an order.
If we pay close attention to any list of requirements, we can find the
application’s constraints between the lines. Some may be obvious and
implicit: The application should allow user access from various clients.
Since there is no special requirement regarding clients, we can limit our
design to the most common ones: web browsers, Android, and iOS. The
application should be distributed across multiple servers to allow the system
to operate in the face of single server failures.
Other implicit constraints are less obvious: The system needs to scale
quickly. We have historical data telling us that the business is fast gaining
customers, which means the application needs to grow in time and meet the
demand.
Strong consistency is necessary for the system’s storage. This is because we
do not want users to be able to make orders that cannot be fulfilled due to a
lack of ingredients. Strong consistency storage will increase the confidence
that the application will request more ingredients from providers before
allowing clients to make a new order.
It is normal to have questions about specific sub-requirements and use cases
at this point. Not having any questions at all may indicate that we may be
missing something or that we are over-simplifying our design.

Note: During a systems design interview, many candidates encounter
requirements that are not clearly defined and incomplete use cases.

This is because many interviewers will intentionally leave information
out to assess whether a candidate can work with other people to
define unclear requirements.
A weak candidate will make a lot of assumptions (some will be
correct, but most will be incorrect) and immediately start describing a
system with incomplete information. A good candidate will take time
to discuss all unclear requirements until reaching an agreement with
the interviewer.
The key things to remember are: Don’t make assumptions, clarify
every requirement, and confirm assumptions with every stakeholder
before moving on from this design step.

Notice that we have not defined specific solutions yet. All we have
determined is what needs to be done, not how. This distinction is important
because it keeps us impartial to specific architectures or patterns. If we
immediately say: “This application needs to use REST APIs” or “we have to
use MongoDB”, we may be over-constraining ourselves, even if the solution
seems obvious.
One key thing to remember is that we will use the constraints to reduce the
size of the problem. The more constraints we define, the more we can
reduce the list of tools available for us to build the system. Choosing
frameworks, patterns, and tools will be straightforward if we can reduce the
problem.
Once we have reviewed all requirements and put together a list of
constraints, we can move to the next step.

Defining the system’s interface
Having a defined list of requirements allows us to enumerate the list of
operations that the system needs to support. We can think about this step as
defining an interface as we did in Chapter 3, Designing APIs: A list of
operations, parameters, and expected return types.
In this step (Figure 11.3), we will define the system operations and user
actions in the form of a system interface:

Figure 11.3: Step 2

An advantage of defining an interface soon in the design process is that it
allows us to create a concrete list of the data we need to complete the
interface’s actions.
We need to ask the following questions: What actions will the clients and
users perform in the system? What data does the application need to fulfill
those actions? What data does the action return when the operation
succeeds? What data does the action return when the operation fails?
For instance, think of the action of creating an order. The most basic data
we need is the order information. However, we need to track who made the
order, so we also need to pass something to identify the user.
Also, since the system now supports multiple locations, we need to know
the location the user selected to create the order. This parameter can be easy
to forget if we have not clearly defined our application’s requirements
beforehand.
Finally, the action should return a status code to let the clients know
whether the order was successfully created or not. Remember that there is a
chance the request fails due to technical issues like a server failure or
underlying problems with the process, like a location running out of
ingredients.
Let us take a look at the interface definition for creating an order:
StatusCode create_order(Order, User, Location)

Notice that we are not defining a REST API or a Java Interface, as it is too
early in the process to know if any of these are the correct tools for this
implementation. Maybe GraphQL and Python are better choices. The
system design process should remain implementation-details-free for as
long as possible to not restrict our creativity and available toolset.
We can repeat this process for each requirement: Querying orders, creating
reports, canceling orders, and so on. We will skip them for the sake of

brevity, but the process is not different from what we just did: Define the
operation, its parameters, and return data.

Defining data models
In this step (Figure 11.4), we must define the input and output data
attributes for the actions we defined in the systems interface:

Figure 11.4: Step 3

We can structure the models with any format that clearly defines their
contents. For instance, JSON is a good choice as it clearly and concisely
describes the relationships between each attribute in the model.
From Chapter 4, End-to-end Data Management, we can bring back the
example of the data stored in an order model:

1. {
2. id: 123,
3. items: [
4. {
5. type: “PIZZA”,
6. ingredients: [“CHEESE”],
7. quantity: 1,
8. size: “XL”,
9. price: 12.99

10. }
11.]
12. total: 12.99
13. notes: ‘Extra crispy’
14. image: “…”
15. date_created: “…”

16. }

Notice that we have added an attribute to store the image we defined in our
requirements. What are we storing for that attribute? It could be the file’s
binary data (in a BLOB), or we can store the file separately and use this
attribute to store a reference to the external file storage.
Defining each model in our application will give us insight into what data
needs to be stored. This information will inform the next step in the design
process.
A vital heuristic here is to avoid defining data not explicitly mentioned in
the requirements or by the domain experts. Extra, unnecessary data
introduces complexity, extra space, and additional cost that is difficult to
remove once we implement the application.
Remember that the model definition will not remain static: We can return
and update our models as we need to store more attributes. For instance, if
we later find out that we need to keep analytics data about orders, we might
later introduce timestamps to store the date and time the record was created.
But for now, we will only define data critical for achieving the basic list of
requirements we just described.

Calculating the system scale and size
One of our constraints is that the application needs to scale quickly. This
constraint involves having an application that can grow as traffic increases
to cope with the added load. However, scaling a system can be difficult if
we don’t define an approximate starting size for the application.
In this step (Figure 11.5), we will create an estimation for the number of
servers and the amount of storage we need to initially reserve to cope with
the expected number of transactions in the system:

Figure 11.5: Step 4

Calculating an application’s traffic and storage size requirements will reveal
constraints around the initial number of servers or the type of databases we
need to use for our design.
It isn’t easy to fully define how much traffic an application will get if this is
a new system; we might not have concrete data on how many user requests
we can expect or how much data we will have to store. At this point, we
need to make some informed guesses from the functional requirements.
Let us assume we have no historical information about the existing Pizza
Place app. This assumption will force us to demonstrate how to
approximate an accurate application size using only our data model,
requirements and constraints, and our experience as developers.

Note: These assumptions may be slightly off, and that is fine. We
cannot predict the future. However, assumptions should be backed up
by as many facts and data as possible; and all stakeholders should
agree upon them (other developers, application owners, and
infrastructure experts, among others).
If the business owners have historical data about the process we are
trying to model, that should inform our design as much as possible.
Real data will reduce the number of assumptions we must make while
building our system design.

Estimating the storage size
Defining the amount of data storage we will need to host the application
requires us to part from fundamental facts. If we build our estimates from
actual data, we will be confident that these facts will be as close to reality as
possible.
Let’s start with text data. It takes one byte of data to store a single character
encoded in UTF-8, 2 bytes if we need to use UTF-16 encoding. Unless your
application needs to support the whole Unicode character set, it is safe to
assume each character will use 1 byte. The average length of English words
is between 8 and 9 characters, but languages like German have an average
size of 12 characters per word.
These facts allow us to assume that each word we need to store in our
application will take, on average, 8 bytes if we are only to support English

text. If we want to think in worst-case scenarios, the longest words in
English are between 20 and 25 characters, but we will be fine using an
average unless our requirements indicate the need to use a wide range of
vocabulary.
We can define the same size requirements for numbers: Integers take 2 or 4
bytes, depending on the language implementation. Long-typed variables
take 8 bytes. Since numbers can be contained in single variables, we don’t
need to calculate average sizes as we did for text. A timestamp takes 12
bytes to be stored in most databases. These facts about the most basic data
units will provide educated calculations for the next step, so ensure
everyone working with you in designing a system agrees on using the same
values.
Lastly, for the pictures that need to be stored, we can assume that each
average photograph file has a size of 200kb. While the image size can vary
significantly with the format used to store them, we can enforce this size by
processing pictures when they are uploaded to the application.
Now, we define the data entities we plan to store in the system. Let us look
again at the Order entity we described in Chapter 4, End-to-end Data
Management, but annotated with the data unit sizes we just defined:

1. {
2. id: Long (8 bytes)
3. items: [
4. {
5. type: String (8 bytes)

 ingredients: [String], (8 bytes, times the

number of ingredients)

6. quantity: Integer, (2 bytes)
7. size: String, (8 bytes)
8. price: Long (8 bytes)
9. }

10.]
11. total: Long (8 bytes)

 notes: String (8 bytes, times the avg. number of

words in the attribute)

12. image: BLOB (200kb) or String (8 bytes), if using a
string reference

13. date_created: Timestamp (12 bytes)
14. }

From this model, we can assume that we will store both “Orders” and
“Items” in the same document. But even if we convert this to a relational
model, the size would remain essentially equal.
Notice how the models we defined in the previous step provide the
blueprint for the data size requirements. We use well-known basic data type
sizes to approximate each attribute size requirement.
At this point, we need to clarify some more constraints: How many items
does an order have? How many ingredients does an item have?
After looking at examples of previous orders (or just talking with the
domain experts), we all agreed on the following assumptions: Each item has
six ingredients on average, making its size 48 bytes. The notes in a regular
order can have up to 40 words, so we can assume notes will take 320 bytes
to store it. Each order has, on average, five items.
Now, we can reflect on the model in a better way:

1. {
2. id: Long (8 bytes)
3. items: [// 5, in average (each 74 bytes)
4. {
5. type: String (8 bytes)
6. ingredients: [String], (48 bytes)
7. quantity: Integer, (2 bytes)
8. size: String, (8 bytes)
9. price: Long (8 bytes)

10. }
11.]

12. total: Long (8 bytes)
13. notes: String (320 bytes)
14. image: BLOB (200kb)
15. date_created: Timestamp (12 bytes)
16. }

Let us ignore the image attribute to better gauge our storage requirements.
After adding up all weights, we have a total of 718 bytes per order just for
the data, on average.
This doesn’t mean that all orders will be that size or that this will be the
max size for a single record. This number will help us measure how much
storage we need to reserve to store our records. Some records will be larger
than the average; others will be smaller, balancing out the total storage
used.
If we need to err on the safe side, we can increase our estimation to 1000
bytes or 1 kb per order. This assumption will give us some space to grow
our model slightly if we need to add more attributes in the future. So, in
total, we will need 1kb for the order data and 200kb for the picture.
Now, parting from this well-agreed record size, we can calculate the total
storage needed for storing all orders in the system. Based on the domain
knowledge or historical knowledge, the assumption that we need to define
is how many orders we can expect to store in the system.

Estimating QPS
The term Queries per second (QPS) refers to how many operations, both
reads and writes, on average, we expect clients to perform on the system.
Estimating QPS can inform multiple assumptions: How much data do we
expect the system to generate for a given period. How much cache storage
do we need to cope with the number of read queries?
Let us assume we currently have 150 thousand clients for all locations. The
managers at Pizza Place tell us that, on average, each client makes an order
every three days (some users order once a week, while others make one or
two orders daily). After some math, we can see that the system would have
to store 50 thousand orders daily. Following these numbers we can make
the following statement: For a day, we would need 50MB for record data

and 9.5GB for storing the pictures. We would need ~18GB of record data
and 3.4Pb of storage space for pictures to keep one year of data.
The Pizza Place managers want to keep orders around for three years,
resulting in 54GB for the records and 10.1Pb for images alone. The total
estimated storage needed for storing three years of order data is around
10.2Pb.
After some discussions with the domain experts, we find that 60% of users
tend to order the same food items they have ordered. However, store
managers also query existing orders, increasing the number of read
operations. So, for estimating the number of QPS, it is safe to assume the
number of read operations will be approximately 80% of the number for
write operations: Around 40K read operations.
This estimation of both write and read QPS provides us with some
information: The application performs more writes than reads, so we should
optimize the system for write operations.
Most of the storage needs come from storing the images as binary files. A
single database instance can store all the data. For example, PostgreSQL
has a theoretical limit of 16Tb per table—a limit imposed by the underlying
file system—which is more than enough to store all orders.
While, in theory, we can store all the data in a single vertically scaled
server, other constraints tell us that it is not practical to use one instance:

A single server would be a single point of failure. If the server goes
down, so does the whole system.
The query performance degrades as the data increases. The more data
a single server needs to scan to retrieve results, the longer it will take
for a query to complete.
The server throughput is limited. A server can only read a limited
quantity of data per second.

Estimating the storage throughput
Throughput is one of the principal roadblocks when using a limited number
of servers. Assuming a single database server can read 100MB per second
(a pretty decent throughput for a server) and our record size of 1Kb, we
would be able to read 105,000 records per second.

Creating database indexes can help with the query performance; indexes
allow the database to scan through fewer records before finding the queried
result, but the limit of 100k records per second will reduce the overall
system performance when the total size of the database is in the range of
petabytes.

Note: If we were to keep this data in the “cold storage”, which means
data that will be stored without being modified for a long time, a
single database would be more than enough to hold our data.
However, data in a production database is not at rest: It will grow and
change, especially for a write-intensive application. Distributing the
load of a database through replication and sharding is an effective
way to guarantee that queries will perform at acceptable rates.

Another way to improve the performance under throughput limitations is to
store binary files in a dedicated file storage system. Instead of storing the
file in the same record as the order information, we will keep a reference to
the file. Since we will not be querying orders by their file attachments, we
don’t need to keep that information in the same database. It is only when
the application needs to render the order information that we need to
retrieve the file.

Calculating the cache size
The Pareto principle states that for many outcomes, approximately 80% of
consequences come from 20% of causes. This distribution is a good starting
point for many aspects of software development. For instance, 80% of
issues come from 20% of the code. It is also an excellent heuristic to
calculate the memory needed for a caching layer.
As discussed in Chapter 10, Creating High-performance Apps, caching data
is an excellent way to improve the performance of an application. If we use
the Pareto principle to define a starting point for our cache, we can see that
we will need approximately 11GB of memory to store the cache data for
20% of our total 54GB of order data. Again, that is pretty achievable with a
single server, as a typical server can hold between 32GB and 64GB of
RAM.

If we use a single dedicated server to host a service like Redis, we would be
able to hold 20% of the total data in cache. However, as the application
grows, we want to be able to increase its caching capabilities. Fortunately,
products like Redis have predefined ways to scale into multiple servers, and
hosted services from platforms like AWS, Azure, or GCP will handle
scaling for us (at an appropriate cost).

Note: Not all RAM will be available for caching efforts, as the server’s
OS and its internal processes will consume memory.

Notice that the calculated size for the cache is just a starting point: We
should increase or lower it based on business-specific information, budget,
and historical data. Also, once we build the application, we should be free
to update the cache size as we see fit.
The constraints we defined when we estimated the QPS for the system
inform other decisions about the cache: Given that we have defined our
application as write-intensive and requiring hard consistency guarantees, we
could configure the cache to be synchronously write-through. This will
allow users to query past orders efficiently. A good eviction policy would
be least-recently used (LRU), as users will tend to look at the latest orders
they created when making a new order.

When to stop estimating the size
Using data models to estimate the required storage size is a tricky process.
The more time we put into the task, the more accurate our approximations
will be, but it is a task with diminishing returns.
As we put more time and effort into this estimation, there is a higher chance
that one of our assumptions will be erroneous. Then, all calculations done
on this false assumption will also be wrong. This is why, ironically, putting
too much effort may lead to a less accurate design. We should aim for a
middle point.
In the end, this is just an estimate that most of the time will be different
from the actual space the system will use. Only experience will help you
know when to stop estimating the system’s storage needs.

Creating high-level and low-level designs
At this point of our design process, we have focused on defining our
system’s behavior, the data we need to achieve its goals and the overall
storage size. Most of our analysis has been abstract: While we have defined
the capabilities of specific services or providers, we haven’t defined
specific technology implementations.
This abstraction is on purpose: We must wait to have all facts in order
before deciding what tech stack is better suited for our efforts. Before we
pick a stack, let us do one final, high-level design to define how each part of
the application should interact with each other.
In this step (Figure 11.6), we will create both high-level and low-level
designs for our system:

Figure 11.6: Step 5

Defining a high-level design
In this step, we will create an end-to-end design of each component needed
in the system to fulfill our requirements.
Imagine that we are designing the road infrastructure for a new city. We
need to consider all the critical services (like hospitals) the people in that
city would need to access. Then, we would put roads in place so people can
efficiently reach each service. If two roads need to cross, we know we need
to put a light or a roundabout to enable people to navigate safely and
quickly through them.
Applying the city analogy to systems design, we need to define all the
critical application services client requests will need to reach to achieve
each use case. The roads will be the communication and integration
protocols and services we will use to allow the requests to flow through the
system efficiently.

Let us start by listing the use cases again. The following list only includes
the most critical use cases, but you will need to define each use case in an
actual design process:

“As a user, I want to create an order at a given location”.
“As a user/manager, I want to read the list of orders, using a variety of
search criteria (orders created by a user or orders created at a given
location)”.
“As a manager, I want to query and summarize all order data (for one
or multiple locations), so I can create reports”.

Defining the use case flow
We will enumerate the steps required to perform each use case. We will
only work on the first use case (“As a user, I want to create an order at a
given location.”) for the sake of brevity, but the process for determining
each case’s flow should be the same.

1. The user accesses the application through the client (mobile or web).
2. This client will then send the new order information to a server.
3. The server will perform multiple separate tasks:

a. It will format and validate the order information. If it cannot
fulfill the order (because there are no ingredients or one of the
services is down and no remediation is available), it will return an
error message to the client.

b. It will store the order data in the database, passing through the
cache service.

c. It will upload the file attachment to a file storage service.
d. It will update the user’s loyalty and rewards data in the database.

As seen earlier, any of these tasks can take a long time to complete, or they
can fail. To improve the perceived performance, we will perform all these
tasks asynchronously. Once the server parses and validates the order data, it
will return the client a success message. The client should interpret this
message as “we have received the order, and it is being processed. We will
notify you once the order is complete.”

Now, we can put together a very rough high-level design. We will identify
each component and service used in the use case flow, list them, and
connect them. The result is visually displayed in Figure 11.7:

Figure 11.7: High-level design

While it may seem like we are missing too much information, the goal of a
high-level design is the same as creating a high-level map of a city: We
don’t need to worry about the materials used to create the roads or the
different types of hospitals. We care about the big picture, allowing us to
deep-dive into each element later.

Finding gaps in assumptions
At this point, we want to add some conflict to our example. Imagine we
completed or high-level design but then we figure out we failed to ask a
question: When is an order “complete”? Is it when the system successfully
has stored all data? Can a location reject an order for any unforeseen reason
(like a cook suddenly falling ill)?
In an ideal world, we would have dedicated enough time during the first
step of the design process to clarify this use case. In the real world, it is not
uncommon to catch these gaps later on, and we must know what to do when
that happens.

After figuring out there is a gap in our design, we talk again with the
domain experts. We find out that orders have states: They can be
“received”, “rejected”, “in process”, “out for delivery”, and “fulfilled”.
With this new information, we need to update our “Orders” model to
include a “status” attribute. The value for this attribute will be an ordinal
number or an “enum” that reflects each of the possible states in the order.
We will also need to create a new “Order Updates” model containing a
record per each status change an order goes through. This model will have
the following attributes:

A reference to an order.
An attribute for storing the time and date the order was updated.
An attribute for the new order status.
An optional attribute for adding notes (so the location can add a reason
for canceling the order or if there will be a delivery delay).

These model changes force us to re-evaluate our assumptions on storage
requirements. Fortunately, the domain experts tell us that we will only keep
the “Order Updates” data until the order is fulfilled, after which the data
will be discarded. The only exception is that we need to keep status updates
for canceled orders to evaluate why we couldn’t fulfill the order. Since we
gave ourselves some margin while defining the storage requirements, we
can get away without changing those assumptions for this case. Keep in
mind, though, that most of the time we will not be as lucky and we will
have to recalculate our estimations.
Some changes are required for our interface, though. We need to define a
new operation for clients to check on an order status:
OrderStatus check_order_status(Order)

After re-evaluating all our assumptions, we can update our high-level
design. The updated design can be seen in Figure 11.8:

Figure 11.8: Step 5

In this example, we have been lucky that our omission did not significantly
require re-doing all the design work we have done so far. We have
purposely introduced this bump on the road to make a few points:

Each part of the design process is prone to change.
It is OK to find gaps, but it is critical to address them on time. The
longer we take to catch gaps, the more difficult and expensive it will
be to correct them.

Defining a low-level design
In this step, we will move away from the high level of abstraction at which
we have been operating. We must stop and validate with each stakeholder
that all the assumptions we have made up to this point are correct. Everyone
must agree that we are going in the right direction because all our work so
far will enable all our infrastructure and development decisions from here
on.
In this step, we will revisit the use case flow, but this time we will deep dive
into each component.

Designing the client

From our non-functional requirements, we identified that we need to
support mobile clients (Android and iOS) and web clients. We can split our
high-level entity “Clients” into web and mobile components. Figure 11.9
shows the low-level design for the client component:

Figure 11.9: Low-level design for the client

Designing the web server
Also, from the non-functional requirements, we see that we need to
implement a distributed system. To enable this architecture, we will need
multiple servers.

How many servers will we need? We can do a throughput analysis
similar to the one we did for our database server. Working with
reliability experts, we should define the following points:
How many QPS can a single web server support? This estimate should
consider the latency for downstream services, like database and
external services.
How many locations are there?
How many QPS can we expect from each location? Remember that
some locations can have a significantly larger number of users than
others, and those might require extra servers.

The equation we aim to solve is as follows:

Number of servers per location = Total QPS per location / QPS

per server

Again, this is just a rough estimation. The number of QPS is not static. It
varies from low traffic times (during the night) to high traffic times (peak
hours, special sales). The estimated number of QPS and the number of
servers should also consider the following:

How many servers do we need to serve average QPS?
How many servers do we need to serve high-traffic QPS?

Ideally, we would always have as many servers as needed to cope with high
traffic, but that number may be cost-prohibitive.
A good strategy is to have enough servers to operate at around 60-70% of
server capacity during the average traffic load. This distribution gives us
some margin for small spikes in traffic without scaling. Then, assuming the
time it takes to scale is fast enough to not result in downtime, we can add
more servers once usage for the existing servers reaches a certain threshold
(something like 80-90%).
The thresholds we just used are just a baseline. It all comes down to
balancing three aspects:

How expensive it is to have enough servers to keep usage levels at
acceptable rates during average traffic.
How expensive it is to add more servers when traffic increases.
How expensive it is to have downtime if the gap between the current
number of servers and the number of servers needed during high
traffic is large enough that we cannot scale fast enough.

Some cloud providers provide elastic computing: The cloud services
automatically add more servers as traffic increases, removing the need for
development teams to scale manually. However, we should understand what
is happening under the hood to gasp the cost implications of operating a
fully scalable system.
We will not define specific numbers for our example, as these calculations
are better suited for a book about site reliability. This section lists what we
need to consider when defining the server infrastructure for a system.

For our example, we will assume we have calculated that we will need “N”
servers, which need to be fronted by one or more load balancers. Figure
11.10 shows this simple low-level design:

Figure 11.10: Step 5

Designing the service layer
Notice we have tacitly included “services” in front of each database and
cache layer. We do so to isolate the business logic needed to process and
store orders, loyalty points, and file attachments from the primary server
process that takes care of stitching everything together.
As discussed in Chapters 3, Designing APIs, and Chapter 10, Creating
High-performance Apps, this service separation can be logic -functions or
classes hosted in the same application- or infrastructure-based, like a
microservices architecture. For our case, we will go fully distributed, and
we will create microservices for “Orders Service”, “Loyalty Service”, and
“File Management Service”.

Note: Our example is formulated to explore a distributed system
example. However, the high-level design would work for a single-
server infrastructure too. That is one of the advantages of keeping
high-level designs abstract and implementation free.

We will host each of these microservices on separate deployment units. We
will deploy each to a Docker container hosted in a Kubernetes cluster. This
design choice will allow our system to scale these downstream services
quickly if traffic requires it. Figure 11.11 shows the low-level design for
these Kubernetes-managed services:

Figure 11.11: Step 5

What tech stack should we use to build these services? The services we
have defined have no strong constraints for a given stack. If one of these
services were to perform more specialized tasks, we might have strong
reasons for choosing a specific stack (like choosing Python for training

Machine Learning models, a very popular choice nowadays). However, that
is not our case.
Without strong constraints, choosing a tech stack depends on multiple
factors:

The skills available in the development team: It makes no sense to
write your services in C# if all the developers in the team are more
familiar with Java. It would be more expensive to train the developers
or hire external resources to use a technology they are not familiar
with.
The available infrastructure: If our current infrastructure already
works with a tech stack, there are a few reasons to choose a stack that
will require changing the available resources.

As discussed earlier, one of the advantages of a microservices architecture
is that it gives us the flexibility in using the adequate tech stack for the task.
The only exception to the microservices infrastructure will be the file
management service. After discussing with the development team, we
found that cloud-hosted file storage (like AWS S3 & AWS Cloudfront) is
cheaper and easier to manage than hosting our own solution.

Designing the database layer
We will look at our data models for this step in the design process and
choose the correct database type.
The data models we have defined lean heavily to a document-based
structure. However, some relationships between the data pull us towards a
relational model:

The higher emphasis the new requirements put on ingredients may
lead us to split our “Order” model into multiple entities: one for orders
and one for ingredients.
The “Order Status” is related to the orders in an N-to-1 relationship.

However, we find that both “Ingredients” and “Order Status” have high
locality with Orders, as we often query them together.
The most substantial reason to choose a relational database is the
relationship between “Orders” and “Ingredients”. Since the system will

need to keep track of ingredients to fulfill the orders, its model will require
including attributes that may not be local to “Order”.
A good trade-off would be the following: Use a document database and do
some extra work at the service level to create a relation between “Order”
and “Ingredient”.
For this approach, we will have to de-normalize our data model: We will
consider “Ingredient” as two separate things; one will be the “Ingredient”
model used to keep track of ingredient inventory. The other will be a string
representation of the ingredient:

1. // Order:
2. {
3. type: “PIZZA”,
4. ingredients: [“CHEESE”, “BACON1”],
5. …
6. }
7.
8. // Ingredient:
9. {

10. key: “BACON1”,
11. string_representation: “Canadian Bacon”,
12. stock: 134,
13. unit: “SINGLE_PIECE”,
14. …
15. }

The services will validate the existence of inventory in the “Ingredient”
database and add the string representation to the order record if the
validation is correct. This choice will allow us to take advantage of the high
locality in the models and use a document-based database like MongoDB.

Defining a distributed database strategy
Notice that we have defined our high-level design to consider each model
as being stored in separate databases. As we did with the services, this

separation is logical: The models may be stored in the same database or on
independent servers.
We must distribute our data among multiple servers to provide acceptable
performance levels. To do so, we will design a region-based sharding
strategy.
We can group multiple locations into a single region. We can define the
regions’ limits using each location’s size to distribute the load evenly and
keep database servers close to each location.
However, since we assumed we knew nothing about the existing systems,
we will group locations based on their geographical location. Regions
containing big cities will be smaller, as there is a higher chance they will
have many users. Let us assume we have looked at our locations and
defined five different regions.
To avoid having a single point of failure, we will apply a few strategies:

Each region will have multiple database servers.
All the data for a region will be kept in the same cluster.
The data for all regions will be replicated locally (multiple replicas in
the same region) and globally (multiple replicas across all regions).
This will protect us if a whole region cluster goes down: We will still
be able to redirect traffic to other regions.

A region will contain multiple locations, but each location can have
different traffic demands. Because of this, we will shard the data within a
region cluster using consistent hashing. This sharding strategy will
guarantee that the traffic load for all locations is spread evenly across
multiple servers in the same region.

Search term: consistent hashing
Consistent hashing is a technique used to distribute data across
multiple servers. This sharding strategy does not depend on the
number of nodes in the cluster directly.
Instead of sharding data based on data attributes, records are
distributed in a hash-map pattern: A hash is created for each record,
and this hash is used as a key to define which server the record should
be stored. That same hash is used later on to retrieve the record.

The cluster defines key ranges for each server. If one of the nodes goes
down, the server with the following range takes over. If a node is
added to cope with increased traffic, the node with the most records
splits its range and re-distributes its data with the new node.
Unlike regular hashing strategies where all data needs to be re-
distributed across all nodes when one or more nodes are removed or
added, this distribution guarantees that only a tiny percentage of the
data will be shuffled around.

Figure 11.12 shows a simple low-level design for the database layer:

Figure 11.12: The consistent hashing strategy follows a ring-like pattern

Again, defining a specific number of servers per region is done based on the
calculated throughput of each server and the number of expected QPS per
location.

Defining read and write replicas
Since high consistency is one of the main non-functional requirements we
defined initially, we may want to direct all writes through a single node.
This approach may conflict with the fact that we labeled our application as
“write-intensive”.

Fortunately, many design choices we have defined reduce the amount of
“write” operations we need to perform for a single server. Our sharding
strategy alone may be enough to allow us to perform all read and write
operations we need without relying on multiple replicas.
We choose to keep replicas for failure management purposes. Secondary
replicas may not need to respond to queries unless the primary database
servers go down:

Database servers for one location can hold “cold” replicas of other
locations.
Database servers for one region can hold “cold” replicas of other
regions.

Of course, these replication strategies must be considered when calculating
the storage requirement for each database server.
The number of replicas we need to create depends on the expected QPS and
throughput calculations, aiming to have enough servers to keep server load
at a specific utilization threshold. Once the data storage passes those
thresholds, we may consider adding more shards to a region’s cluster.

About scaling the file storage
As mentioned in the previous section, we will use a hosted file storage for
the file attachments, so we don’t need to define a low-level design for this
component. We will pay for the cloud provider to scale this service for us.
This saved effort is one of the benefits of using cloud-based infrastructures.
Sure, it may be a bit pricier, but we will be able to focus on building quality
into the other features.

Integrating each layer
We have defined high-level and low-level designs for each component in
the system. Now, it is time to put them all together.

Client to server
Clients will communicate with the server through HTTP requests. Since the
interface for creating an order is pretty straightforward, the server may

expose its API through a REST endpoint. However, querying orders may
require different search criteria: Users will search orders created with their
user account. Managers will search orders based on time ranges and
locations. Owners will search orders based on multiple time ranges and
multiple locations.
These search criteria may change with time, considering that the Pizza
Place owners are increasingly relying on their system to gain better insights
into their business. We may offer ourselves some freedom in the future by
exposing our API through GraphQL. If our team has the skills to implement
it (and the development team agrees to the added complexity), go ahead and
expose the service as a GraphQL API. Otherwise, REST may be a good
starting point.
Since we have divided our application into multiple regions, we may want
to redirect our users to the load balancer closest to them. We will need a
routing service or reverse proxy for this. This service will look at the
geographic location of a user and direct the request to the adequate region
cluster.

Web server to services
Since up-time is critical for the business, we must add resilience to the
communication between the web services and the services hosted in the
Kubernetes cluster. An application queue service like Kafka may offer
temporal storage if one of the services goes down.
Each microservice will listen to the service queue and consume the
application events as soon as the web server puts them in the service queue.

Services to database
Services will communicate to the database through the cache service (for
example, Redis). The cache service will provide resilient communication
with the database, retrying queries in case the database is unavailable.

Overall low-level design
Once we have completed a deep dive into each system component, it is time
to put together a complete low-level design for the application. We can see
the result in Figure 11.13:

Figure 11.13: Step 5

Identifying failure points
One of the main characteristics of a distributed system is its tolerance to
failure. Software applications (and the computers they are running on) can
fail due to multiple reasons:

Application errors. Malicious users cause the application to be in an
inoperable state.
The server runs out of memory or disk capacity.
The server loses its network connection.
The data center goes offline due to network outages or natural
disasters.

When a server becomes inoperable, we have two choices to fix the problem:
try to recover the server or replace it with another server.
When a server gets into a bad state, it may be because of a networking
process or the application itself stopped; a simple reboot is often enough to
get it into a working condition again. The advantage of recovering a server
is that we can recover all the data state it was holding before the failure.

Recovering a server is particularly useful for database servers, where we
risk the data not being correctly backed up before failure.
The main disadvantage of recovering a failed server is that it is a complex,
uncertain, and slow process. We must correctly diagnose the problem, fix it,
and start the application while the server remains incapable of serving client
requests. And there is no guarantee that we will actually be able to fix the
problem. Because of these complexities, it is often easier to just replace the
server.
Replacing a server is often faster than recovering a failed node. The process
can be almost instantaneous if the server we use to replace the failed server
is already up and running. We just start redirecting traffic to the healthy
node.
The disadvantages of replacing a server are also related to state: The
healthy server may not have an up-to-date copy of the server’s memory and
disk data, and replacing the offline server will result in data loss. This is
why we have put so much emphasis across this book on keeping stateless
servers and microservices: It simplifies state and error management for
servers and containers.
In general, distributed systems deal with failure through redundancy: Every
server and service in the application should have at least one copy that can
take over in case of failure. In web servers and Docker containers,
redundancy means having multiple server copies. In database servers,
redundancy is having numerous replicas, even if we already apply a
sharding strategy.
In this last step in our design process (Figure 11.14), it is time to consider
all the things that can go wrong and see if we have addressed all concerns.
The goal is to identify single points of failure: Places that can cause the
system to be inoperable if something goes wrong.

Figure 11.14: Step 6

Let us look at some failure cases to see if our design is robust enough to
deal with them so that the system can still operate while we fix the problem.

Failure case: A web server goes down
If a web server goes down, the load balancer will choose a different replica.
If the number of web servers goes down a pre-determined threshold (let’s
say half the servers are offline), we can create new web server instances.
Thanks to the stateless nature of the web server, adding new nodes behind
the load balancer should be straightforward.

Failure case: A microservice instance goes down
One of our microservices instances may fail. If this happens, the Kubernetes
cluster can create a new container instance and replace the failed service.
Again, this is possible only if we keep our microservices stateless: We
should keep all the persistent storage in the cache and databases.

Failure case: The file storage service goes down
If AWS S3 goes down, there is little we can do. A simple fallback would be
not to store the file attachment and log the failure. The upload-picture
feature may be unavailable but the rest of the application will work with
degraded functionality. However, if the application owners determine this
trade-off is not acceptable, our design should expand deeper into other
storage alternatives.
For instance, we can use multiple cloud providers, like using both AWS and
Azure. If one of the providers is down, we can fall back to store the files in
the second provider. Then, we can run an offline process to move the files
to the first provider once it goes back online. This approach is more
complex and may be better suited for applications where accessing the file
storage is critical.

Failure case: A node in the service queue goes
down

If a service queue node goes down, all traffic can be redirected to another
node. However, any transactions in progress for that node that the
microservices have not consumed may be lost.
We can define a time limit for recovering the node. If the node does not
come back online (or if it does, but the data is lost for some reason), the
application should be able to update the order status to reflect the problem.
This is only possible if the application applies order updates within a single
transaction: Only update the order status once all the tasks have been
completed successfully.

Failure case: A node in the cache layer goes down
If a node in the Redis cluster goes offline, we can redirect requests to
another node. No recovery is needed; the cache writes all data to the
database first. The worst-case scenario will be that the application will have
to serve requests from the database instead of serving them from the cache
storage, resulting in degraded performance.

Failure case: A database server goes down
If one of the database servers goes down, we will lose a shard. However,
since we keep replicas both local to the region and outside it, a workaround
exists: If the shard is down, redirect the query to one of the “cold” replicas
in the same region. If the region has no replicas or the replica is also down,
redirect queries to a “cold” replica in another region.
If we can recover the server, synchronize it with the replica that took over,
and once the server is up to date, bring it back online and start accepting
queries.

Failure case: The infrastructure for a whole
region goes down
In recent years, it has become common to find news like “Cloud provider
goes down, taking thousands of applications with it.” In these cases, if a
single region (a cloud provider-defined region, not one of our Pizza Place

regions) or data center goes down, then all the services for the applications
hosted in that region also become offline.
Development teams often could have prevented these failures if they had
replicated the application across multiple provider-defined regions (or
across different cloud providers). It is a more expensive and complex
approach, as we need to pay for more servers and synchronize them
correctly. Still, it guarantees their applications are resilient during these
high-profile events.

Extra considerations about failure management
The system we just designed does allow us to replicate our application
across multiple Pizza Place location-defined regions. In worst-case
scenarios, one region can take over traffic for another while we work to
bring the failed servers up again.
The following are some extra patterns and techniques used to improve the
availability and resilience of microservices in a distributed system:

Sidecar pattern: Deploy components of an application into a separate
process or container to provide isolation and encapsulation.
Circuit breaker pattern: A proxy service put in front of a service
invocation. This proxy allows developers to create error management
logic when a service cannot be reached: retrying the service calls,
providing reduced functionality, and so on.
Chaos testing: Controlled experiments that simulate infrastructure
failures. Chaos testing increases our confidence in the system’s ability
to operate, possibly at a reduced capacity during the failure of services
and servers.

We will not go into further depth on these patterns, as their implementations
often depend directly on the underlying tech stack used to build the services
and the specific business needs.
After going through all the possible points of failure, we can complete the
design process and move forward with the implementation. However, this
design must be reviewed by as many peers and stakeholders as possible.
After everyone involved understands and approves our plan, we should
implement our designed system.

Remember that the system design is a live document: It will keep evolving
as we implement the application, and the design needs to reflect any
changes. The design is only a blueprint, the ideal state of the application.
The system implementation will reveal that many of our assumptions were
incorrect and we must be flexible enough to adapt to the ever-changing
business landscape.

Conclusion
There are many steps involved in the system design process. It is critical not
to skip any of the steps, as each informs our decisions in the next ones. On
the other side, the design process is dynamic, so we can revisit each step as
we find gaps in our assumptions.
The first steps are focused on listing requirements and clarifying
assumptions. We should spend the most time and effort possible at this step,
as it will render a solid base for all the decisions we will have to make later.
Hard facts and data should back up each assumption we make, so it is
essential to have feedback from every stakeholder early on.
Key stakeholders are the business domain experts, other developers, and as
many technical and non-technical experts we can involve in the process:
site-reliability engineers, application security experts, compliance teams,
legal advisors, and so on. A strong team will provide the feedback we need
to be confident in our design decisions. And while some of these experts
may not be available to us, we should at least look at our design from their
point of view and understand their concerns.
Once we have a clear understanding of all the requirements, we must
decompose them into multiple use cases for the system. Then, we extract
from each use case all the components and actions required for users to
fulfill their goals in the application.
We define actions as operations in an interface. The interface should receive
data as parameters and return the result of the action. The interface will help
us identify what data is needed and what isn’t to achieve the use cases.
Having identified the entities passed back and forth through the interface,
we must model their attributes and structure. Models help us understand
and define constraints around what data needs to be stored and how much
capacity we need to reserve in our servers to store it.

The amount of web servers we need is calculated based on the estimated
average and worst expected QPS for each user action. Since each server has
limited throughput, estimating how much data will enter our system will
help us calculate how many nodes will be needed to cope with traffic
requirements at acceptable performance levels.
Data models also inform what type of database we need to represent the
system’s state. This will lead us, in turn, to design better ways to distribute
the application state across multiple shards and replicas. We should choose
a sound strategy based on the characteristics of the data, the expected load
distribution across the clients, and the consistency and read-write rates we
defined while identifying non-functional requirements.
Even when the steps in the process are well defined, there is no single
system design that fits all use cases. The whole process is a mix of art and
science. We must be creative, collaborative, and fully open to feedback to
find the right tools that will allow our application to grow and help our
users achieve their goals.
With this chapter, we have almost reached the end of the book. We have
used all the knowledge we have acquired across each chapter, so feel
confident enough to go out there and start practicing the skills you have
received. The only way to become proficient at something is through
constant practice.
Remember that this book contains only a tiny fraction of all the knowledge
you will acquire during your career as a backend developer. You now have
the right tools to start exploring for yourself all the possibilities out there for
you to build software applications that will change people’s lives for the
better.

Questions
1. If we assume we have a single-server infrastructure, what changes can

we introduce to handle a sudden increase in traffic successfully?
Which components and tools can we introduce? How can we leverage
caching strategies?

2. “Over-architecturing” is a serious and common problem were we
design a system with more features than needed. What are the

disadvantages of designing a system that is too large or complex for
the system use cases?

3. Think of popular, large-scale systems like Google, LinkedIn, or
Facebook. What would the result of this design process look for them?

Resources
“How to get better at ‘Back of the envelope’ calculations”:
https://www.wired.com/story/how-to-get-better-at-back-of-the-
envelope-calculations/
What is load balancing?
https://www.nginx.com/resources/glossary/load-balancing/
“Promoting replicas for regional migration or disaster recovery”:
https://cloud.google.com/sql/docs/mysql/replication/cross-region-
replicas
“How to identify and mitigate single points of failure”:
https://scalefaster.com/identify-mitigate-single-points-failure/
Consistent hashing: https://www.toptal.com/big-data/consistent-
hashing—
Side-car pattern: https://docs.microsoft.com/en-
us/azure/architecture/patterns/sidecar
Circuit breaker pattern:
https://microservices.io/patterns/reliability/circuit-breaker.html
Chaos testing: https://www.infoq.com/news/2016/03/chaos-testing-
microservices/

https://www.wired.com/story/how-to-get-better-at-back-of-the-envelope-calculations/
https://www.nginx.com/resources/glossary/load-balancing/
https://scalefaster.com/identify-mitigate-single-points-failure/
https://www.toptal.com/big-data/consistent-hashing
https://microservices.io/patterns/reliability/circuit-breaker.html
https://www.infoq.com/news/2016/03/chaos-testing-microservices/

W

CHAPTER 12
Bootstrap Your Career Path

hether you’re only starting your career or you have a few years of
experience, a back-end developer never stops learning and

progressing. We use this last chapter to define a common path for junior
developers to become senior developers, strategies to keep you updated,
and advice on preparing for technical interviews.

Structure
In this chapter, we will learn the following topics:

Defining the expectations on junior developers
What makes a senior developer
Improving hard and soft skills
Preparing for technical interviews
Finding mentors
Finding resources to keep learning

Objective
By the end of this chapter, we should understand how to advance further in
our careers as back-end software engineers.
Specifically, we should have a good understanding on:

What is expected of us when we land a software developer role
How to become a senior developer
How to tackle coding interviews
How to set up a path to increase our knowledge

Defining the expectations on junior developers

Every developer is a junior developer at the beginning of their career. Being
a junior developer does not mean we are not competent or good at
programming, it means we have a lot yet to discover of the world of
working in software development projects.
At the beginning of our career, it is challenging to fully grasp our role in a
software development project. As discussed in this book, software
development has many responsibilities; some require a deeper
understanding of specific areas like data theory or algorithms fundamentals.
Finding our place in the middle of all these tasks can be scary.
First, rest assured that almost no professional development team will expect
junior developers to do it all. More senior developers understand the
pressure junior developers face because they have been in their place; good
managers will ensure that a junior developer is only assigned tasks they can
handle.
So, what is the job of a junior software developer?

Joining our first development team
When we join a development team for the first time, we may find ourselves
a little disappointed; yet also relieved because most of the work we will be
assigned is simple: Fixing minor defects or making simple changes to the
application.
The goal of assigning junior developers simple tasks is to set them up for
success. Being able to complete these simple tasks builds the confidence of
junior developers and gives them the courage to explore and take more
complex work.
However, even senior developers benefit from taking simple tasks when
they first join a team. Fixing minor problems allows us to concentrate on
crucial aspects of the team-defined development process itself:

How is the code structured?
How to deliver code changes through the CI/CD pipeline (if there is
one), successfully deploying them to production?
How the team deals with defect tracking and reporting?
How the team peer-reviews code changes?

What are the team’s code quality guidelines?

The first commit a new developer makes is sometimes a good indicator of
their experience. Senior developers will always put together the simplest
code change possible and focus on taking it all the way to production.
Simple code changes have the advantage of requiring little peer-review
work, which, in turn, has two benefits:

It increases the chance of other developers reviewing your code
change. In many teams, developers can choose what code changes to
review. People will tend to choose more straightforward, easier to
review code changes.
It decreases the chance of having your commit rejected during peer
review. Smaller commits mean fewer places where we could introduce
a bug.

The following are a few good practices not only for junior developers
making their first commits but also for every code change done to an
application repository:

Make small commits.
Only include essential code changes.
Stick to team and industry-defined best coding practices.
Document the code and add comments where necessary.
Add all pertinent documentation and change descriptions to the
commit.
Look to get as many reviews as possible.

Most of the time, managers don’t expect junior developers to build complex
features within their first weeks of work. They also don’t expect developers
to deliver a lot of code changes in a short period. We prefer fewer commits
that have high quality built into them.

Following guidance from other developers
Software development is a team effort. Those developers who don’t know
how to work well with others are set up for failure, especially when they
first join a new team.

The best thing a developer can do is create good relationships with other
team members. We don’t have to be best friends with everyone, but we
should build relationships based on trust with the rest of the team.
Otherwise, collaboration becomes impossible, and we cannot achieve
common goals.
Other team members are one of the greatest assets a junior developer has
when they first join a new team. These developers will know the existing
processes, gaps in the documentation, and best practices to help us ramp up
faster in the project. They can help us move forward when we get stuck
with a task.
Most development teams assign a mentor to new team members. It’s a
mentor’s job to guarantee their mentees have the knowledge they need to be
productive team members. It is a mentee’s job to trust their mentor and
follow the path the mentor sets up for them. Of course, we have input in our
career path, and mentors are open to discussion if we are not comfortable
with the direction we are following.
Being open and transparent with our new teammates will allow us to
quickly transition into more complex tasks. When a mentor and teammates
have the visibility into a junior developer’s work and its results, they can
start assigning increasingly exciting work.

What makes a senior developer?
The transition from a junior developer to become a senior developer takes
time. Being a senior developer takes more than having the necessary
technical skills for the job. It requires practical experience in the field.
Many companies have different criteria for considering a developer as
‘senior’. There are cases where a developer has the title of a “senior
developer” in one company only to be designated as a “developer” when
they transition to another company. The opposite is possible, too. A non-
senior developer can become a senior when they move to a new job. These
inconsistencies show us that being a senior developer does not necessarily
involve having that title assigned to us.

Characteristics of a senior software developer

A senior developer has a set of characteristics that remain semi-constant
from team to team. Some teams will have more specific criteria to designate
a developer as “senior”, but this list of features truly makes a senior
developer not only in the title:

Senior developers act independently. They need little to no supervision
to complete their work.
Senior developers own their work. If something goes wrong due to the
developer’s actions, the developer will openly recognize the situation
and act to remediate it.
Senior developers are team workers. They don’t need managers to
mediate and find agreement with other developers. They have the
communication skills to find a middle ground with other people who
have different opinions.
Senior developers build quality. They produce more value than what is
minimally needed to create a feature.
Senior developers are domain experts. They pick a field in which they
specialize and provide guidance to everyone who needs it.
Senior developers mentor other developers. They usually are mentors
to other team members and support their work and careers.
Senior developers constantly improve themselves. They understand
their strengths and weaknesses: They use their powers to help others
and find ways to improve on their weaknesses.

How does a junior developer become a senior developer? There is no single
path. However, we can use the characteristics we just listed to recognize
gaps. We can ask ourselves the following questions:

Do we have the technical skills to write code that will result in robust
applications?
Can we work on the project without having other people constantly
tell us what to do?
Are we good team members who look up for every person in the
team?
Have we mentored other people?

If the answer to any of these questions is no, we now know our opportunity
areas to improve our chances of becoming senior developers. We can create
an action plan that will foster our skills.
The following are some actionable items for any junior developer who aims
to become a senior developer:

Improve hard and soft skills. Communication skills are just as
valuable as programming skills for senior developers.
Do the work ourselves, but be open to help. It is valuable that a
developer tries to tackle complicated challenges themselves instead of
expecting other people to provide solutions for them. However, senior
developers recognize when they become stuck and need help from
others.
Aim to become a mentor. Many companies offer developers the
opportunity to mentor new team members. This work is usually
optional, and beyond our day-to-day responsibilities. Some developers
choose to skip mentorship roles, but we should take these chances if
we plan to become a senior developer.

Being a senior developer is more than a title. Senior developers build value
for themselves, the product, and their team members.

Improving hard and soft skills
The only way to become better at something is through practice, and the
best way to become proficient in any skill is by using it. Practice takes time,
dedication, and patience.
Professional skills are often categorized into hard and soft skills. Hard skills
are technical capabilities like coding and system design skills. Soft skills
are more related to the way we collaborate with others.
It is common for people with technical roles to avoid fostering “soft” skills:
Interpersonal communication, problem-solving through collaboration, or
conflict resolution. They believe that technical or “hard” skills alone are
enough to advance their careers. And while some developers manage to get
to management positions with poor soft skills, the truth is that most people
will get stuck in their career development if they don’t improve skills like
communication.

Improving technical skills
For most software developers, improving hard skills is straightforward:

Take a tech stack and keep building applications with it.
Follow news feeds and blogs to keep ourselves up to date with new
technologies, tools, and frameworks.
Read books and take online classes.
Attend tech conferences and meet-ups to learn the latest advances in
the industry.
Find a technical mentor that helps us learn best practices and advanced
patterns.

Like in any other technical field, we can find different areas of
specialization in software engineering. Each topic covered in this book has
an extensive background that overlaps with fields like mathematics or
electronics; as professionals, we can choose to go as deep on them as we
want.
For instance, some developers choose to build their careers around data
management and storage. They become experts in databases and the way
they operate internally. They can find work with database providers like
Oracle or companies that operate in big data like Google. People who
choose to work around data management can find a lot of resources in
Information theory: a field that covers data and how it is stored and
transmitted.
Other developers can choose not to go as deep in any specific technical
field and expand their knowledge horizontally into other areas. This work
can lead to a technical architect role, which has its own level of complexity.
These developers still have successful and meaningful careers solving
business problems for other people.
One of the reasons learning software development can feel so
overwhelming is the complexity behind each component in a system. It is
easy to think that we must become experts at everything to be good
software developers. This feeling is justified but a little misguided. We
don’t need to be experts in every field thanks to one of the most powerful

concepts in software development (and science in general): complexity
abstraction.
For instance, we learn basic math during our school years. Many people in
the world use math proficiently in their daily lives without a deep
understanding of the underlying theory behind arithmetic operations. We
don’t need to get a Ph.D. in Mathematical Theory to use addition or
multiplication. All the facts necessary to make the math work are abstracted
out, and we trust that the operations will work as defined.
Thousands of software developers build successful applications daily
without ever deep-diving into the inner workings of the tools they use. Just
as multiplication is an abstraction layer built on addition and we can
multiply numbers without thinking of them as additions, we can use most
software development components without knowing each piece of its inner
workings.
This doesn’t mean that we should not strive to understand the theory behind
software development. Understanding the basic principles gives us a better
intuition behind the “best practices”. The more knowledge you acquire
about fields like information theory, network theory, hardware
specifications, and low-level programming principles, the better developer
you will become.
The key takeaway here is that we should not aim to be experts at
everything. As long as we understand the big picture of software
development (like we have tried to achieve in this book) and specialize in
one or two areas, we will become proficient software developers.

Improving people skills
Soft skills are often referred to as “people skills”: The capability of
collaborating with other people to achieve a joint goal.
Software developers often undermine soft skills because software
development is a task we can achieve in isolation. Given enough time and
resources, a single developer can build a complete application without little
to no interactions with other people.
However, resources like time and money are not infinite and are not always
readily available. We can achieve a larger goal through collaboration with
other professionals while working within these resource constraints.

Soft skills have a less clear path for improvement. They usually require
people to introspect on their attitude towards others. This introspection is
not an easy process, as it often leads to finding flaws in ourselves and the
way we treat other people.
Let us discuss some of the actions we can take to improve our soft skills.

Practicing conflict resolution
In a team composed of people from multiple backgrounds, there will always
be a case where team members don’t agree on something. In these
situations, it is critical to move ourselves to find consensus with others.
Finding a middle ground usually requires compromise. Choosing a solution
that will not fully satisfy the expectations of both parties but, in the end,
will provide the most viable path forward.
We can practice conflict resolution through empathy. What is the other
person trying to achieve? Why is their goal in conflict with ours? Do we
fully understand their point of view?
More often than not, conflicts come from people trying to achieve different
goals that are not entirely in sync. We can prevent most conflicts by
aligning those goals first.

Working on communication skills
The basis of any collaboration is communication. We share our ideas with
others to get feedback. We listen to other people’s ideas to gain insights
from their points of view. Ideas circulate across the team members,
improving during the process. Communication is one of the most critical
skills for any software developer; yet we treat it as a second-class citizen.
We often believe that having communication skills is being good at
reporting to managers, being charismatic, making friends easily, or public
speaking. All these, while helpful, are not communication. Worst, some
people think that being a good communicator involves using many long
words and complex terms. That is the opposite of good communication.
Communication skills mean sharing information concisely and clearly.
Simplicity is a key. We should communicate the same ideas with the
simplest terms and the least amount of data possible.

Software developers tend to overuse technical terms when communicating
with people who may not be as technically proficient. While technical terms
are enlightening for those who know them, they obscure information for
those who don’t. It is critical to understand our audience: Communicating
the design for a system should be addressed differently when the receiving
end is a team of engineers than when it is a team of business analysts.
Richard Feynman, a famous American physicist, was known for his ability
to explain the most complex topics to a broad audience. His lectures at
universities were so enlightening and easy to understand that people
ranging from undergrad students to experts like Albert Einstein would
eagerly gather around to listen. Feynman had a simple yet powerful idea. If
you can’t explain something in simple terms, you don’t understand the
topic.
Following Feynman’s principles, we can gauge how well we understand
software development by measuring how well we can explain it to non-
technical people in the simplest terms.
Good communication skills have multiple benefits:

People will be more open to working with us.
We will be able to demonstrate the full extent of our knowledge during
work interviews.
Managers will understand the value we are providing to our teams.
Other team members will understand our expectations of them and
their work.
We will be able to justify each decision done during the software
design and development process.

Just like hard skills, we improve soft skills through practice. Join a debate
or public speaking group and engage in constructive discussions. But above
all, be open to feedback from others; by identifying the cases where we fail
to communicate efficiently, we will know when to fine-tune our
communication and people skills.
Combining hard and soft skills can lead to software development teams
working as one and achieving ambitious goals.

Preparing for technical interviews
Finding a software development job can be a stressful process for many
developers. Many talented people fail to find a job because they are not
prepared for all the extra steps involved in getting and passing an interview.
This section will break down the typical process a software developer has to
undergo when finding a job in a software development team.

Getting an interview
There is a high demand for software developers. The world is in a constant
modernization state, moving a lot of processes that historically have been
done in person or through more analogical solutions into software systems.
Companies in the industry are offering large salaries and excellent benefits
because they struggle to find talent.
For many developers, there is a disconnection between this demand and
their personal experiences looking for a job. They send tens if not hundreds
of resumes every day, only to get one or two interviews. They go through
the interview process and end up without an offer. Why is this happening?
Let us put ourselves in the recruiters’ shoes. Suppose it is difficult for
someone with a technical background to keep up with all the new tools and
technologies released every day. In that case, it is more challenging by
orders of magnitude for recruiters who typically have little to no technical
training.
Typically, recruiters rely on specific keywords to search for candidates.
Someone in the development team will provide the recruiter with a list of
technologies and an expected proficiency often calculated in years of
experience. The recruiters then take that list and search through sites like
LinkedIn, where they can find a list of potential candidates and their work
history and skills. Only profiles that match these search criteria will pass
this first filter.
After defining a list of potential candidates, recruiters may send it back to
the development team to choose a few of them for interviews. This second
filter will leave out all candidates who don’t seem to have the required
skills or level of proficiency.

Resumes and profiles in social networks aimed at professionals are the
presentation cards for people looking for a job. We may be the best
programmers in the market, but we may never get an interview if our
profiles are not visible to recruiters.
A good resume or profile needs to achieve multiple goals. It needs to
contain all the keywords recruiters use in their queries. It has to showcase
our skills and pertinent achievements in just a couple of paragraphs. It has
to make other developers want to work with us.
We can achieve those goals by following simple good practices (and
avoiding some bad ones).

Building a good resume
A recruiter and the development teams looking to fill a position will read
through tens of resumes every day. Unfortunately, due to this high number
of potential candidates, employers will only evaluate each resume briefly.
Unclear and long resumes have a disadvantage during these screening
processes. Even if the candidate is more than qualified, recruiters will
discard them in favor of candidates if their resumes don’t clearly and
concisely communicate their skills and capabilities. It is a bit unfair, really,
but recruiters operate under limited resources.
Once we understand the recruiters’ point of view, it is easy to understand all
those popular pieces of advice on building resumes: Keep them short. Even
if we have twenty years of experience, our resumes should not be longer
than one or two pages. Following Feynman’s clarity advice, if we cannot
state our achievements and skills in a simple way is because we don’t fully
understand them.
When we force ourselves to enumerate our achievements and skills in less
than one page, we will improve our chances of prospective employers
reading all we have to say about ourselves.
Something that can give us the edge over other candidates is to craft
individual resumes for potential employers or roles. This is especially
useful when you have extensive experience in multiple areas: It puts
relevant experience at the top and leaves out irrelevant information.
For instance, we may have experience as full-stack developers. But if we
are applying to a back-end development role, there is no use in going in-

depth on our front-end skills. A simple mention at the end of the resume
will be enough to communicate that it is something we can also do. Or, if
we are applying to a team specializing in building REST APIs, we may
want to go more in-depth on our experience working in that topic.
People with a lot of experience think that listing all of it will make them
look good when instead it is causing the opposite effect.
Another good practice is to list specific, measurable achievements. It is
better to write “working in the database management team, I reduced query
time a 34% by implementing an effective indexing strategy, resulting in an
increase in profit of X USD” than to write “10 years of experience
improving database performance.” Specific goals give employers a good
idea of what you could do for their teams.
If we struggle to state our achievements in the previous projects, those
achievements are probably not worth mentioning, as they will not give you
any advantages over other candidates.

The importance of networking
Having a good resume is just the first step in getting an interview. While
resumes and profiles improve our chances of appearing in recruiters’
searches, we are still at the mercy of search algorithms.
We can improve our chances of landing an interview if we know someone
already working at the company. Employers take referrals seriously; they
even have rewards programs for existing employees to refer to people they
know for open positions.
Of course, we will not go around asking random people to refer us. While
some people have no issue having people they don’t know reach out for a
referral, others may consider it rude and may hurt our chances of getting an
interview.
Networking is the most effective way of knowing people in companies that
can be prospective employers. We can engage in conversations with other
developers, recruiters, and managers through social networks like LinkedIn
or social events. College alumni programs are also an excellent way to
network with other professionals.
Again, we can see the benefits of improving our soft skills. When we have
an extensive circle of known people, we may be gaining access to

professional opportunities that otherwise would be unavailable for us.
People, after all, are social creatures, and we tend to want to help others we
already know.
Networking may be complex for introverted people. The expectation here is
not to make a lot of friends. The idea is to engage with other people in
things we are interested in, as we will gain a lot of insights from their points
of view. Fortunately, we live in a world where we don’t have to meet other
people face-to-face to create a robust network of people.
An effective way to increase your network is to join clubs and software
development communities. Collaborating in open source is an often-used
way for developers to showcase their work and meet other people in a
comfortable setting, even for introverted people.

Improving interview skills
Once we have built a robust and concise resume or a good profile in a social
network, recruiters will start approaching us. Not all opportunities will be as
generous as we expect them to be, especially at the beginning of our careers
but some will.
Recruiters will reach out to us, asking to set up an exploratory call. This
first call has two goals: The recruiter wants to give us a high-level
description of the project and the open position. What the team does and
skills they are looking for in a good candidate. The recruiter wants to know
more about us. Our experience, our background, the kind of work we are
interested in, and our skills.
In this first call, they rarely will ask technical questions to us. The idea is to
explore if we would be a good candidate to interview for this position. The
recruiter will likely go over our work experience as listed in our resume, so
we should be able to provide more in-depth details about each project and
achievement.
If we like what the recruiter says to us, the next step will be to schedule a
technical interview.

The technical interview process

Software development companies, especially large ones, are known for
their particular technical interview process. The goal of a technical
interview is for prospective employers to understand whether you have the
technical skills needed for the open position. However, it is also an
opportunity for us to better understand what it’s like to work there and
whether the development team and position is a good match for us.
Technical interviews can be very simple like a brief discussion about our
previous work experience with a potential manager or very complex solving
coding problems or building a small software application.
We will describe a typical process for companies like Facebook, Google, or
Apple in the following sections. Some other companies may have only a
subset of these modules or require even more steps. The idea is to know
what we can expect on each part of the interview and prepare for them.
The typical process usually has the same steps for interviewing a junior
developer as for a senior developer. However, the degree of complexity and
the expectations on each interview varies depending on the seniority level
of the position.
The typical interview process contains multiple modules:

Coding & data structures and algorithm problems.
System design problems.
Take-home assignments.
Manager discussion.

Approaching coding problems
In coding interviews, interviewers try to assess whether the candidates have
experience solving problems requiring data structures and standard
algorithms. People often refer to coding interviews as “whiteboard
interviews”.
This interviewer presents a problem to the candidate. The problem may
sound over-simplistic and, at times, unrelated to the software development
process. The expectation is for the candidate to put together a performant
code solution for solving the problem.
This interview allows interviewers to assess multiple skills at once:

Problem-solving: How the candidate deals with a potentially unknown
problem?
Finding the problem’s constraints, asking for clarifications in
assumptions.
Knowledge about data structures: Does the candidate use the proper
data structure for the problem? Does the candidate understand the
trade-offs of using one data structure versus another?
Knowledge about algorithms: Does the candidate recognize if the
problem can be solved with a well-known algorithm?

Let us describe an example question. This will be a simple problem
proposition, but it will allow us to demonstrate how to tackle this kind of
problem efficiently.
The interviewer asks us: “Write a function to find a specific number in a list
of sorted integers.”
A weak candidate will immediately jump in and start writing the code. They
may choose a poor performant solution like iterating through each element
in the list until they find the number they are looking for. Even if they find a
performant solution; this shows poor problem-solving skills. Any software
developer should understand the problem before trying to solve it.
However, a good candidate will pause and analyze the problem proposition
for a second. What exactly is the interviewer asking us to do?
First, we need to analyze the problem the interviewer gave us. For instance,
we know we will receive a list of numbers and one number we will look for
in the list. We know the numbers in this list are natural numbers, as they are
integers.
We also know that the list is sorted. This last piece of information is critical.
It will guide us on what algorithm we can choose to solve the problem
efficiently.
Let us think of a naive solution. Iterating through each element in the list
requires us to search the whole list. As the size of the list increases, so will
the amount of work our application would need to perform to find the
result. In the algorithm design world, we say that this linear search has a
linear time complexity, or O(n). This naive solution is not taking advantage

of all the facts provided by the interviewer. For instance, we know that the
list is already sorted. How can we use that to our advantage?
Well, problems for searching elements in sorted lists are great candidates
for binary search. Since the binary search eliminates half of the elements in
the list on each iteration, it needs to execute considerably less work than the
linear search. Binary search has a time complexity of O(logn), significantly
more performant than O(n).
If we don’t have a more formal background in software engineering, we
might wonder what these “O”s mean. This is known as asymptotic
complexity. It is how we measure how performant an algorithm is by
looking at how much work it needs to perform as a function of its input, in
the worst case.
This is why we assume that a linear search will have to search in every
element in the list, even if there are cases where the element we are
searching for may be the first element. Asymptotic complexity measures an
algorithm performance using the worst-case scenario.
We will not go into more depth about asymptotic complexity, as it is a topic
that could cover a whole book by itself. However, since this is a topic any
software developer should understand, we have included a link in this
chapter’s references section.
The key here is to define a solution before we start coding it. Try to solve
the problem manually by defining some examples. Try to step through
multiple use cases. These examples offer a deeper insight into the obstacles
we may find while coding our solution.
Finding a solution before we write its code will save us a lot of valuable
time because once we start writing code, it will take a lot of effort to discard
a poor solution and rewrite all the code you already have.

Using data structures efficiently
During coding interviews, identifying suitable data structures for specific
problems helps us solve the problem. We can use some of the following
heuristics while defining the data structure we want to use.
Hash maps are good for retrieving data in semi-constant time (meaning,
fast!). If we need to retrieve an element from the data structure over and
over again, hash maps allow us to do these repeated searches efficiently.

However, finding ranges of elements (e.g. finding the ten largest elements)
is not efficient in normal hashmaps since their elements are not sorted. A
binary search tree or a sorted list is better suited for those tasks.
Binary search trees (BSTs) allow us to search efficiently; assuming the
tree is balanced because their elements are sorted, and we can apply binary
search on them (it is on the name!).
BSTs, like any sorted data structure, are also a good choice to find max or
min elements. However, using a heap is even more efficient to keep track of
max or min elements, as that is their sole goal.
Linked lists are better than arrays for generating dynamic lists. We can just
add more nodes at the end. However, searching elements in a simple linked
list require us to search through all nodes. But once we find the location of
an element in a linked list, it is faster to remove it (or add more nodes
around it) than it is in a regular array where you would have to shift all
other elements after a deletion.
As we see, each data structure has its trade-offs, and each is better at some
problems than others. Understanding these advantages is what helps us
build efficient algorithms.

Using algorithms efficiently
In our example, we have mentioned binary search as an efficient way to
search in a sorted list of elements. What if our list is not sorted?
We have a few options here. The most straightforward approach is to sort
the list. We can use an algorithm like merge sort, which sorts elements in
O(nlogn) time. Then, we can apply binary search. However, this approach
still takes O(nlogn) time, which is consistently worse than just doing a
linear search. So, even if it seems like we did the smart thing in our
example by sorting the list first, the asymptotic analysis tells us that we are
actually better off with a brute force approach.
Knowing the most commonly used algorithms and their expected
performance allows us to choose the right one for our problem.

Coding a solution

Once we have identified that our problem can be solved using binary
search, we confirm our assumptions with the interviewer. We don’t want to
start coding until we get feedback from our interviewer and they confirm
that our approach is valid.
A perfectly valid answer here is as follows:
Given I={1,2,..,N} of integers, and K>=0

result = binary_search(I,K)

This response is valid because binary search is a well-known algorithm with
an also well-known time complexity of O(logn). It’s what we call a black-
box algorithm: a well-defined function we can just use and assume its
performance.
However, some interviewers will want you to code the actual
implementation of the binary search. Unless you are interviewing for a job
designing search algorithms, a request like this from an interviewer is a sign
of two possibilities: The interviewer is inexperienced. Experienced
interviewers recognize that you don’t need to memorize black-box
algorithms to be a good software developer. Your solution is not the right
one. Maybe this problem requires a modified version of binary search.
Then, we cannot treat the algorithm as a black box, and we need to work on
its implementation.
Notice that the solution we provided is not using any programming
language. We call this pseudo-code. It is a step-by-step description of the
algorithm using natural language. We could also have used something like
Python or Java. We must clarify with the interviewer if it is ok for us to use
pseudo-code or if we need to use a specific programming language.
While (or preferably, before) coding our solution, we should identify edge
cases. What if the list is empty? Can the list have repeated numbers? What
if all the elements in the list have the same value? Pointing out and
addressing these edge cases in our code will indicate to our interviewer that
we have good analysis skills.
Once we finish writing our function, we need to provide the asymptotic
analysis. This analysis will let our interviewer know that we understand the
performance implications of our code. At this point, we are done with the
problem.

Coding problems are controversial. Some developers believe that they don’t
accurately reflect a candidate’s real-life experience building software.
Others believe that they are critical, as they allow interviewers to assess a
candidate’s proficiency using data structures and algorithms to solve a
problem efficiently. Whether we are on one side of the debate or the other,
the truth is that coding interviews are a part of the process today.
While some companies do not require whiteboard interviews, most do. It is
better to be prepared, even if we don’t fully believe in using them to assess
a candidate’s skills.

Getting better at coding interviews
Being good at coding interviews is itself a skill that we can improve.
Actually, being good at software development doesn’t necessarily imply
that we will be good at coding interviews, and vice versa (which is another
argument of the people who are against whiteboard interviews).
There are resources out there that can help us practice solving coding
problems. To hone their coding skills, many software developers regularly
visit websites like leetcode.com, hackerrank.com, and careercup.com.
These websites have many coding problems that companies often use
during technical interviews.
Solving practice coding problems do help us develop an intuition on how to
approach them. Then, the problem-solving process becomes second nature.

Working on system design interviews
In Chapter 11, How to Design a System, we described the overall steps of
designing a software application. System design interviews require us to do
a reduced version of that process.
In general, we still need to apply the same principles we described in the
previous chapter. Define requirements, confirm assumptions, define
interfaces and data models, estimate capacity, create high-level and low-
level designs, and find bottlenecks in the design.
However, interviewers don’t expect our designs to be very detailed. If it is
challenging to create a perfect system design in a couple of days, it is
almost impossible to do so in one hour. The interviewer will focus on a
simplified version of the problem or a specific module of the system.

The expectation for us as candidates here is to show our problem-solving
skills. Again, a weak candidate will immediately jump to describe a system
design without having defined and confirmed all the requirements and
constraints of the system. A good candidate will take their time to make
sure they and the interviewer agree on what needs to be designed before
describing how.
On system design interviews, we should focus on creating systems that
address the problem specifications. We should stay away from designing
over-complicated systems just to demonstrate our knowledge. A simple yet
elegant design is better than a complex one.
Some examples of common system design interview questions are:

Design a chat system
Design a Netflix-like system
Design an Instagram-like system
Design a search engine
Design an elevator
Design an application for a parking lot

Notice that these questions are intentionally open-ended. They are designed
for evaluating how candidates work when they miss information. What kind
of questions do they ask? How they collaborate with the interviewer to
make valid assumptions. How they clarify requirements.
In the end, system design questions are all about collaboration between the
candidate and the interviewer.

Take-home assignments
Some employers consider it unfair to expect a candidate to design and build
an application within an hour. Instead, they give the candidate “homework”:
A small assignment that the candidate will take home and solve before a
given deadline.
The expectation is that, since we will have more time and resources to work
on the application, the result of the assignment should resemble the type of
work we would perform for the team.

We must understand what exactly the take-home assignment is asking us to
do. Make sure to read many times the problem proposition until we
understand all the constraints and requirements.
Focus on code quality, modularity, and reusability. Don’t try to cheat by
copying a solution we found on the Internet or by having someone else do it
for ourselves. Once you return to finish the interview, the interviewer will
ask you details about your solution to the assignment and may ask you to
make small changes to make sure you fully understand the code.
While going above and beyond by making a beautiful user interface or
using a cool new technology may give you some extra points, please don’t
do it at the expense of ignoring some of the base requirements. Solving the
right problem is more important than showing off.

Approaching non-coding modules
A good part of the software development interviews is a simple discussion
between a candidate and the interviewer. These discussions can cover a lot
of ground:

Previous experience in our resume. The interviewer wants to
understand our involvement in the projects we listed in our resume:
our achievements and learned lessons from previous roles.
Understanding of the software development process. These questions
focus on how the candidate collaborates in a software development
process. How well they understand things like version control, CI/CD
processes, and so on.
Team dynamics. How good is the candidate in conflict resolution?
How do they deal with co-workers who disagree with them?

Most of the time, managers are the ones who perform these interviews,
quite possibly our future manager. They are trying to assess how well we
would fit in their teams and how easy it would be to work with us.
These modules are our opportunity to shine some light on our
accomplishments, so we should be prepared to talk about them. We should
also be ready to talk about challenges we have had in the past and how we
approached them.

Here is where our soft skills will help us. We will have an ally during the
hiring decision process if we can communicate with the interviewer
efficiently both technically and non-technically.

Asking the right questions
Most interviews leave some time at the end to allow candidates to ask their
own questions. These questions are not there for us to look smart in front of
the interviewer. They are for us to get an insight into our potential
employer.
This part of the interview is not the right time to ask about compensation or
company benefits. Those questions can be better addressed by the recruiter
or other HR team members. Besides, the person interviewing us often does
not have visibility into how much we would get paid if we get hired.
We should take this time to gain visibility into the point of view of an
employee or team member. The interviewer can talk about their personal
perspective on how the team and the company operate.
The following are a few examples of good questions to ask here. They shine
a light on our future responsibilities and the challenges the team (and the
company) are facing.

What do you do in a typical workday?
What is the most interesting challenge you have found in this team?
How much input do developers’ opinions have in product decisions?
Can you choose a thing to improve in the team and the company?
When was the last time your manager promoted someone?

Remember that the interview is not just for the employer to assess the
candidate. It is also for us to evaluate whether working there is a good
choice.

Finding mentors
Improving our careers as software developers is a constant effort. No matter
how experienced we are, there will always be room to grow and new things
to learn.

However, there is a limit on how fast we can grow professionally by
ourselves. We need new problems to challenge us and people around us to
widen our perspective. Moving out of our comfort zone is the first step to
growing.
Mentors are people who we can look up to. They often are proficient at
something we are interested in and are open to sharing their knowledge
with others. They inspire us and help us view the world from a new
perspective. Finding a good mentor is an excellent way to advance our
careers.
Again, people skills are helpful while looking for a mentor. People will only
be interested in mentoring us if they consider we are the kind of person they
can easily collaborate with. Being a mentor involves giving honest, yet
sometimes challenging, feedback to the mentee. This is why a relationship
mentor-mentee requires openness and trust; two values that we can only
achieve through good communication.
While we get the best out of mentorship when our mentor is actively
involved in helping us, we can find a more unilateral mentorship
relationship in people whose work we admire. Many developers find
inspiration in software developers they follow on social media or whose
work can be found online or in books.
Finding a mentor is especially useful when we find ourselves stuck in our
careers. We can look at them and know what we could achieve if we follow
their same path.
Mentors have the advantage of having walked the road. They may have
succeeded, but they also made mistakes that helped them learn, grow, and
get where they are. If we can learn from their experience, we can save
ourselves from making those same mistakes.
Keep in mind that being a good mentee involves being receptive to
feedback. A developer who cannot take constructive criticism or who
believes they already know all the answers will gain little to nothing from
their mentors.

Finding resources to keep learning
In recent years, there has been a boom in available resources for software
developers to improve their skills. From traditional college education

through bachelor’s and master’s degrees to commercial boot camps that
promise prospective developers to help them become professionals in only
a few weeks. Even with all these educational resources, it may be
challenging to find the right learning source for us.
The first step is to think about what type of resources work best for us. Not
everyone learns in the same way: Some people prefer visual aids like books
or blog posts; others prefer more dynamic and auditive resources like
YouTube videos or podcasts.
An effective way to keep learning is to immerse ourselves in the world of
software development. Find a topic we feel passionate about; it could be
database management, REST API design, or overall system design. We will
get better results if you focus on a particular field. Then, start exploring all
the free resources you can find about the topic: Blog posts, videos,
podcasts, social network posts, and so on. Thousands of resources, some
better than others, are at our reach with a single Internet search.
Focus on sources that actively engage with their communities and
constantly post news on the field’s latest trends. Look at the same content
other experts in the field consume, even if we feel they are too advanced for
us.
Take a few minutes every day to consult your sources. We don’t have to
memorize everything we see or hear. Just let it sink. Little by little, we will
begin to interiorize even the most advanced terms. We will start forming
our own opinions, our own criteria.
Then, after a few weeks of being surrounded by the material, reflect on it.
Do we feel excited about it? Does it make us want to understand it better? If
so, we may have found something that makes us feel passionate about it.
That is the best state of mind we can have when learning something new. If
we are not enjoying the process, it may be a good indicator that we should
explore some different topics.
Then, build small personal projects or contribute to an open source project.
Talk about it to other developers. Have fun with it. Enjoy the process.
Progressively, increase the complexity and depth of the material you
consume.
But, above all, be compassionate with yourself. Know that you will not
become an expert overnight. Becoming a better software developer is

something that takes time and dedication. Don’t be too hard on yourself, or
it will become a weight more than an advantage.
Being compassionate with ourselves will give us the patience we need to
endure the difficult parts of becoming excellent professionals. Like Rocky
said to his son in the 2006 movie “Rocky Balboa”: “It is not about how hard
you can hit but how hard you can get hit and keep moving forward.”

Conclusion
Advancing in our career is a demanding yet rewarding process.
Understanding what other people expect of us at each career level is critical.
Every developer has to start from a junior position. This role helps us get
familiar with the software development process in a real-world scenario. At
the beginning of our career, we are not expected to build entire distributed
systems by ourselves. We must remain open to taking work that may seem
unimportant at the time, as it is work that software development teams need
to get done.
Transitioning to a senior developer position requires us to operate
independently. To be senior developers, we not only have to be able to build
quality into software applications, but also must take the role of a mentor
for other, more junior developers. The title matters less than actually having
the skills that make up a senior developer.
We must work on both hard and soft skills. Hard, technical skills are
improved through a mix of practice and keeping ourselves updated on the
best practices in the industry. We enhance our soft skills with a combination
of self-introspection and openness to communication and collaboration.
Both types of skills are required to advance in our careers, and ignoring one
in favor of the other will limit the opportunities we will find in our
professional future.
Finding our next job requires us to put ourselves in the position of recruiters
and managers alike. Once we understand their motivations and practices to
screen candidates for interviewers, we can build an attractive profile for
recruiters and development teams.
The key to building an effective resume or professional profile is to keep
things concise and clear. If we cannot state in just a couple of paragraphs

what our achievements have been along our professional career is because
we don’t fully understand them ourselves.
The technical interview is a lengthy process that requires preparation. We
need to be able to write efficient code using the correct data structures and
algorithms, and we should be able to evaluate how performant they are. We
must be familiar with the software design process we described in the
previous chapter. But above all, the most critical skills for any interview are
problem-solving, efficient communication, and collaboration.
The interviews are an opportunity for employers to evaluate how good a fit
a candidate is. Still, it is also an opportunity for candidates to gain insight
into whether this prospective employer is a good fit for them.
Mentors are people who can help us progress in our careers. They lend us
their experience to take a shorter path than the one they had to walk to get
where they are. If we choose to have a mentor, we also must be open to
their feedback.
While there are thousands of resources out there to keep improving
ourselves, it is critical to understand ourselves and the way we learn better.
We must be compassionate and patient with ourselves, as we will likely
make mistakes and struggle to become better developers.
We have now reached the end of our book. A book’s content is only as
valuable as the reader’s effort to put it into practice. The goal of this book is
not to make you an expert at backend development, as no single book can
achieve that. The goal is to give you enough tools to go into the wild and be
able to defend yourself.
Keep yourself humble. The greatest software developer is the one who
recognizes that there is always room for improvement, something new to
learn.
I wish you well in your adventure ahead. It is going to be a wild yet
gratifying ride.

Resources
Information theory:
https://web.mit.edu/6.933/www/Fall2001/Shannon2.pdf

https://web.mit.edu/6.933/www/Fall2001/Shannon2.pdf

Asymptotic complexity:
https://www.cs.cornell.edu/courses/cs3110/2012sp/lectures/lec19-
asymp/review.html
LeetCode: leetcode.com
HackerRank: hackerrank.com
Grokking the system design interview:
https://www.educative.io/courses/grokking-the-system-design-
interview
Richard Feynman and explaining things in simple terms:
https://kottke.org/17/06/if-you-cant-explain-something-in-simple-
terms-you-dont-understand-it

https://www.cs.cornell.edu/courses/cs3110/2012sp/lectures/lec19-asymp/review.html
https://www.educative.io/courses/grokking-the-system-design-interview
https://kottke.org/17/06/if-you-cant-explain-something-in-simple-terms-you-dont-understand-it

Index

A
abstraction layer, client-server architecture

data access service client, database server 26, 27
frontend client and backend client 26

A/B testing 247
acceptance testing

alpha 143
beta 143

access control 181
authentication 181
authorization 185
Pizza Place app use case 187

access control, Pizza Place app
authentication, building 188
authentication, implementing 187
authorization controls, implementing 195
authorization, implementing 187
high-level authorization map, translating to implementation details 195-197
password-related protections, defining 189-192
scopes, using for authorization check 198
testing 198
user management storage, defining 188
user roles, identifying 187
web forms for signup and login, building 193-195

accessibility testing 174
actions 79
adapter pattern 67
Agile methodologies 148
API layer 20
application deployment

history 295, 296
isolated environments 299
reproducible environments 288, 299
robust deployment process 294
scripts 296, 297
shared environments, moving out of 298, 299
version control 299-301

application performance
improving 338
improving, with asynchronous communication 358-360
improving, with asynchronous programming 360, 361
improving, with caching 339
improving, with distributed systems 351

improving, with microservices 357
measuring 332, 333
measuring, with percentiles 337, 338
synthetic testing, versus RUM 333-336

Application Programming Interface (API) 61
design patterns 66, 67
functions, as contracts 61, 62
interfaces 62-66
uses 67

application queue 359
application security 177

access control 181
building 208
CIA triad 178
threat model, creating 208, 209

application testing
automated testing 149
certainty 140, 141
federated authorization 199
manual testing 141, 142
unit testing 150

asymptotic complexity 415
asynchronous communication

using 358
asynchronous programming 360, 361
Auth0 95
authentication 181

best practices, for passwords 182, 183
identification, username and password 182
multi-factor authentication 184
password issues 182
single sign-on (SSO) 184

authorization 185
groups 185, 186
least privilege principle 186
roles 185, 186

authorization service 20
automated testing 149, 150

and CI/CD 170, 171
coverage 162-164
in isolation 152
integration testing, with Selenium 166-169
static code analyzers 171
test cases 172
Test-Driven Development (TDD) 165
unit testing 150-152

availability 180
loss of 181

B

backup and recovery 125
backups, creating with activity logs 126, 127
backup, through replication 127
database files, backing up 125, 126
gaps, tackling 127, 128

binary files 107
binary search 123
Binary search trees (BSTs) 416
BitTorrent 55
Black box testing 142
Blockchain 55
brute-force attacks 182
B-trees 123
BufferedReader 32

C
cache 339
cache strategy

least-frequently used (LFU) 346
least-recently-used (LRU) 346

caching 339
caching tools

CDNs 347
proxies 347

career path
expectations, from junior developer 402
mentors, finding 420, 421
resources, finding 421, 422
senior developer skills 404
technical interviews, preparing for 410

CDN (Content Delivery Network) 347
Certificate Authority (CA) 44
challenges, addressed by frameworks 257

automation tools 258-262
native package management 262, 263
package managers 258

changelog 302
chaos testing 397
CIA triad

availability 180
confidentiality 178, 179
integrity 179, 180

CI/CD pipeline
advantages 297, 298

circuit breaker pattern 396
client 25

versus, server computing 50
client-server architecture 24, 25

abstraction layer 26

applying, to Pizza Place app 52-54
examples 26
HTTP 27, 28
versus, peer-to-peer architecture 54
web server, implementing 28

commit 302
Common Object Request Broker Architecture (CORBA) 68
complex data storage 109

document databases 110
file storage repositories 120, 121
graph databases 117
NoSQL 109, 110
relational databases 112, 113
scalability 119
SQL 109
technical characteristics 121, 122

confidentiality 178, 179
loss of 179

consistent hashing 390
containers 317, 318
Continuous Integration and Continuous Deployment (CI/CD) 170, 294
cookies 194
coverage 162

expanding 163
report 164
usage conditions 164, 165

curl 38
Cypher 119

D
database access, with ORMs 277

data, inserting 283
data, querying 283-286
JPA and Hibernate 277-279
tables, mapping to entities 279-283

Database Administrators (DBAs) 101
databases 109
database services 20
data model, for Pizza Place app

database scaling 136
data store, for menu storage 135, 136
defining 132
requirements 132-135

data storage, in production system
deployment strategy, selecting 129
designing 129

dependency injection 66
deployment strategies, data storage in production system

database deployment, in own server 130

databases, integrating 130, 131
embedded databases 130
server, sharing between database and application 129, 130

deployment strategy 129
deserializing 107
design patterns 254
dictionary attacks 182
digital transformation

and Internet 4, 5
history 2-4

Distributed Denial-of-Service (DDoS) 181
Docker 317
Docker Compose 320
document databases 110

high locality 111, 112
relationships 112
unstructured data 112

DREAD
affected users 210
damage 210
discoverability 210
exploitability 210
reproducibility 210

E
Elasticsearch 239

installing 244
ELK stack 238, 239

errors, logging with 239
end-to-end data management

application state, defining 102
backup and recovery 125
complex data storage 109
data storage, designing in production system 129
hardware storage 102, 103
indexing 122
in-memory data storage 103, 104
Pizza Place use case 132

error handling 216
A/B testing 247
deployment plan, creating 248
errors, as return values 222
exceptions 218
gradual deployment 247
types 217
use case 238

error handling, in distributed systems 237, 238
errors

common causes 216, 217

non-recoverable errors 216
recoverable errors 216

errors logging, with ELK stack 239
Elasticsearch, installing 244
Kibana dashboards, creating 245-247
Kibana, installing 244
locally 240, 241
Logstash, installing 241, 242

event-driven programming 28
eventual consistency 356
eviction policy 346

First-in-first-out (FIFO) 346
Last-in-First-Out (LIFO) 346
Random Replacement (RR) 346

exception handling
errors, preventing 223, 224
implementing 223

exceptions 218
catching 219, 220
errors, validated at compile time 220, 221
stack traces, using 218
types, defining 218, 219

expectations, from junior developers
defining 402
development team, joining 402, 403
guidance from other developers, following 404

Express 42
MVC 274-276

F
facade pattern 67
factory pattern 267
failure case, system design

cache layer node failure 395
database server failure 396
file storage service failure 395
infrastructure failure 396
microservice instance failure 395
service queue node failure 395
web server failure 394

failure management
considerations 396

fakes 161
federated authentication

OpenID 202
Security Assertion Markup Language (SAML) 201, 202

federated authorization 199, 200
advantages 201
disadvantages 201

file storage 20
file storage repositories 120

features 121
heuristics 121

File Transfer Protocol (FTP) 295
frameworks 251

advantages 257
benefits 257
challenges, resolving 253
debugging complexit, adding 290
design patterns 254
impact of community 288
issues, fixing 252, 253
learning 289
libraries 254-256
pre-building abstractions 256
selecting 287, 288
usage criteria 289
zero-cost abstractions 290

functional requirements 10
functional tests 142
future-proofing 13
Futures 361

G
getInputStream method 32
Git 301

branches 308-310
commit details 307, 308
conflicts, merging 312, 313
existing file, modifying 305, 306
file, committing 302-304
file, staging 302-304
hooks 313, 314
merge feature 310, 311
remote repositories 311
repositories, cloning 312
repository, creating 301, 302
reproducible code, enforcing 314

Gradle 258
graph databases 117

data, with connections 117, 118
data, with relationships as first-class citizens 118, 119

GraphQL 90
APIs, building with 89-93

GraphQL SDL model 90
Grey box testing 143
gRPC

using 76, 77

Guava 259
gzip 41

H
hard disk drives (HDDs) 103
hard skills, software developer

technical skills, improving 406, 407
hash maps 415
headless Content Management System (CMS) 94
high-fidelity prototypes 15
high-level design

defining 381
gaps, filtering in assumptions 383, 384
use case flow, defining 382, 383

HTTP cookies 194
HTTP methods 81
HTTP response headers

cache-control 87
ETAG 87
expires 86

HTTPS
enabling, in Express 44-46

Hypermedia as the Engine of Application State (HATEOAS) 88, 89
Hypertext Application Language (HAL) 88
Hypertext Transfer Protocol (HTTP) 27, 28
hypervisor 316

I
idempotency 82
identity provider (IP) 199
indexing 122

example 124
impact of index, benchmarking in SQLite 124
time complexity, reducing 122, 123

Industrial Revolution 3
in-memory data storage 103, 104

in binary files 107, 108
in-memory cache 104-106
in-memory databases 106
in text files 107, 108

integration testing 142, 166
integration testing, with Selenium 166-169

test environment, defining 170
test environment, simulating 170

integrity 179, 180
loss of 180

interfaces 62
Internet 4

Internet of Things (IoT) devices 18
Inversion of control (IoC) 264
IOException 220

J
Java ARchive (JAR) files 258
Java Database Connectivity (JDBC) 26
Java.lang.Error 219
java.lang.Exception 219
java.lang.Throwable 219
Java Stream API 32
Jedis

using 348, 349
JPA (Jakarta Persistence API) 277

K
Kafka 360
Kibana 239

dashboards 245
installing 244

Kubernetes 319

L
layered architecture 49

business/services layer 48
client, splitting from server 46-51
persistence layer 48
presentation layer 48

LetsEncrypt 44, 45
load testing 174
localhost 30
logging 230
logging services 20
Logstash 239

filter attribute 243
input attribute 242, 243
installing 241, 242
output attribute 244

low-fidelity prototypes 15
example 16

low-level design
client, designing 384, 385
database layer, designing 388, 389
defining 384
distributed database strategy, defining 389, 390
file storage, scaling 391
read and write replicas, defining 391

service layer, designing 386-388
web server, designing 385, 386

M
manual testing cycle

detailed reports, creating 145, 146
fixes, validating 146
test plan, creating 144, 145
test plan, executing 145
test plan, updating 146

manual tests
acceptance testing 143
advantages 146
and Agile 147
Black box testing 142
building 143, 144
code testing 149
explorability 146
Grey box testing 143
horizontal validation 147
integration testing 142
performing 141, 142
system testing 143
types 142
unit testing 142
user-centered vision 147
White box testing 143

Maven 258, 262
memoization 340
mental model 29
microservices 357

adoption of better tools, encouraging 357
benefits 357
horizontal scaling, enabling 357
parallel collaboration, enabling 357

mocking 140
mocks 161
Model-View-Controller (MVC) pattern 263, 264

limitations 276
modern system design

building blocks 20
front-end 18, 19
high-level view 17

multi-factor authentication 184
multi-user apps

backend developer 7
designing, for solving real-world problems 6, 7
problems, resolving 8, 9
sample use case 9

N
Nginx 320
NodeJS Express server

HTTPS, enabling 44-46
using 41-43

non-functional requirements 10
non-functional testing 142, 173

accessibility testing 174
application security and penetration testing 173
load testing 174
performance testing 174

non-recoverable error 217
NullPointerException 220, 221

O
OASIS Security Services Technical Committee (SSTC) 201
OAuth 95
OAuth2 203

access token, requesting 205, 206
authorization code, requesting 204, 205
code flow 206
implicit flow 206, 207
OpenID, building from 207, 208
terms 203

Object-Oriented Programming (OOP) 254
object-relational mapping (ORM) frameworks 277

disadvantages 287
Python’s Django ORM 286, 287

Open Database Connectivity (ODBC) 26
OpenID 202

OAuth2 203
Open Web Application Security Project (OWASP) 211

top 10 vulnerabilities 211, 212
orchestration tools 319

P
packet sniffer 44
paid certificates 44
Pareto principle 223
password recovery 193
peer-to-peer (P2P) architectures 54, 55
penetration testing 173
people skills. See soft skills
percentiles 338
performance 332
performance improvement, with caching 339, 340

cache-aside 342

cache patterns 341
caching strategy, selecting 345
eviction policy 346
reading and writing load, defining 341
read-through cache 342, 343
write-behind cache 344
write-heavy applications, caching 343
write-through cache 343, 344

performance improvement, with distributed systems 351-353
data consistency, in replicas 353, 354
data consistency, in sharding 356, 357
data consistency, maintaining 353
eventual consistency, versus strong consistency 355, 356
multiple read replicas 355
single write replica 355
through replication 352
through sharding 353

performance testing 174
Pizza Place app 9, 10

client-server architecture, applying 52-54
data model, defining 132
defining 9, 10
remote API, generating for 96-98
reproducible deployment environment, creating with Git and Docker 319, 320
requirements, defining 16, 17

Platform-as-a-Service (PaaS) 317
ports 30
procedural programming 28
production errors, handling

anatomy, of log entry 231, 232
error, propagating 229
errors, bubbling up 224-226
errors, identifying with logging 230, 231
errors, mitigating 224
fallback, providing 227-229
good error messages, defining 224
good log and error messages, designing 233, 234
log entries, persisting to file 234-237
logging 233

production-ready server
using 41-43

professional skills, software developer
hard skills, improving 406
improving 406
people skills, improving 408
soft skills, improving 406

programming interfaces 69
Promises

using 361-364
proto3 71

protobuf 71
proxies 347
proxy pattern 67
public APIs 95, 96
Python’s Django ORM 286, 287

Q
queries per second (QPS) 174
queue 20

R
RabbitMQ 360
Random Access Memory (RAM) 103
Real User Monitoring (RUM) metrics 336
recoverable error 216
Redis 347

as distributed cache 106
as distributed session management 106
as message broker 107
long-running operations, caching with 347, 348

Redisson 349
using 349-351

regressions 141
Relational Database Management System (RDBMS) 26
relational databases 112, 113

fixed structure 114
independent models 114
multiple relationships 114
normalization 115-117
versus, graph databases 119

remote API 67
building, with GraphQL 89-93
building, with RPC/gRPC 68-71
gRPC client, building 74-76
gRPC server, building 71-74
Remote Procedure Call (RPC) 67, 68

Remote Method Invocation (RMI) 68
Remote Procedure Call (RPC) 67, 68
remote repositories 311
replication 127
representational state transfer (REST) 79
reproducible deployment environment, Pizza Place app

application, setting up 320
creating, with Git and Docker 319, 320
docker-compose.yml 324-326
Docker in CI/CD 327, 328
Git, adding 327
nginx.conf 325

nginx directory 323
trade-off 328, 329
web directory 320-322

requirement definition cycle
client’s domain-experts help, requesting 14
detailed picture of business, obtaining 13, 14
domain-expert work 14, 15
heuristics 12
problem, identifying 12, 13
prototypes, building 15, 16
requirements, defining for Pizza Place use case 16, 17

requirements
collecting 11
functional requirements 10
non-functional requirements 10

REST APIs
actions, versus HTTP request methods 81-83
building 79-81
caching 86, 87
effective REST APIs 87-89
naming resources 83
relationships 84, 85
singular, versus plural 83, 84
versioning 85, 86

robust deployment process
defining 294

S
scalability 119

horizontal, versus vertical scalability 119, 120
Second Industrial Revolution 3
Security Assertion Markup Language (SAML) 201, 202
self-signed certificates 45
sendResponse function 36
senior software developer

characteristics 404-406
skills 404

separation of concerns pattern 48
serializing 107
servers 25
shard 353
sidecar pattern 396
Simple Object Access Protocol (SOAP) 77, 78
single sign-on (SSO) 184
Six Sigma 223
socket 30
soft skills, software developer

communication skills, working on 408, 409
conflict resolution, practicing 408

improving 408
software application tester 141
Software-as-a-Service (SaaS) approach 95
software developer

professional skills, improving 406
technical interviews, preparing 410

Software Development Life-cycle (SDLC) methodologies 147
software transformation 5, 6
source of truth 105
spies 161
Spring 264

annotation-based configuration 270
code-based configuration 269
dependency injection 265-268
MVC 264-274
XML-based configuration 268, 269

Spring WebFlux 274
SQLite

impact of indexes, benchmarking 124
stack trace 218
staging 303
standalone APIs

building 93
headless CMS 94
public APIs 95, 96

stateless containers
working with 318, 319

static code analysis 220
static code analyzers 171
static web applications 206
STRIDE

denial of service 210
elevation of privilege 210
information disclosure 209
repudiation 209
spoofing identity 209

strong consistency 355
stubs 161
Subversion (SVN) 314, 315
synthetic testing 334

for CI/CD validation 335
for regression testing 335

system design process 368
cache size, calculating 379, 380
client to server 391, 392
data models, defining 373, 374
failure points, identifying 393, 394
high-level and low-level designs, integrating 391
high-level design, defining 381
interface, defining 372, 373

low-level designs, creating 381
low-level designs, defining 384
overall low-level design 392
Pizza Place app example 369
queries per second (QPS), estimating 378, 379
requirements, defining 370-372
scale and size, calculating 374, 375
services to database 392
size estimation, stopping 380
storage size, estimating 375-378
storage throughput, estimating 379
web server to services 392

system testing 143

T
TCP/IP 30
technical interview process 413

algorithms, using 416
coding interviews 417
coding problems, approaching 414, 415
data structures, using 415, 416
non-coding modules, approaching 419, 420
questions to ask 420
solution, coding 416, 417
system design interviews 418
take-home assignments 419

technical interviews
interview skills, improving 412, 413
networking, importance of 412
preparing 410
resume, building 411
scheduling 410

test cases
conditions 173
mock test, as needed 172
single use case per test, defining 172

test doubles 161
Test-Driven Development (TDD) 165
testing 139

functional tests 142
negative tests 142
non-functional tests 142
positive tests 142

testing in isolation 152
isolated code testing 152-156
mock tests 159-161
stub, versus mock 161
test dependencies, isolating 156-158

test plans 144

test scripts 144
text files 107
threat modeling 174
Threat Modeling process 208, 209

application, decomposing 209
countermeasures, determining 210
mitigation, determining 210
threats, determining 209
threats, ranking 209, 210

time complexity 123
time-to-live (TTL) 343
traditional CMS

versus, headless CMS 94

U
unchecked exceptions 221
unit testing 142

V
version control systems (VCS) 300

Git 301
SVN 314

Virtual Machines (VMs) 20, 315, 316
versus, containers 318
virtual infrastructure 316, 317

W
Waterfall methodology 147, 148
Web Application Resource (WARs) 258
web requests, handling 263

Spring framework 264
web server

as stateless services 51
implementing 28, 29
main process 29-33
multi-user support, with multi-threading 38-41
response, serving 33-38
session data, storing 52

Web Services Description Language (WSDL) file 77
White box testing 143

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	Acknowledgement
	Preface
	Errata
	Table of Contents
	1. Building Multi-User Apps
	Structure
	Objective
	Digital transformation and a little history
	Digital transformation and the Internet
	Software transformation

	Designing apps to solve real-world problems
	Caring for user problems as a back-end developer
	Finding a problem to solve

	Define a sample use case: The Pizza Place ordering system.
	Defining functional and non-functional requirements
	An ineffective way of collecting requirements
	The requirement definition cycle
	Find out what is the problem your client is trying to solve
	Get a detailed picture of the business.
	Request the help of one of your client’s domain-experts
	Learn how the existing process works today
	Build prototypes and revise requirements
	Use case: Defining requirements for the Pizza Place

	The modern system design: a ten thousand-feet view
	Getting the front-end out of the way
	Building blocks

	Conclusion
	Questions

	2. The Client-Server Architecture
	Structure
	Objectives
	Architecture details
	Abstraction layer: Frontend client and backend client
	Abstraction layer: Data access service client, database server

	HTTP: The language of the web
	Implementing a web server
	The main process
	Serving a response
	Multi-user support with multi-threading

	Using a production-ready server
	Enabling HTTPS in Express

	Layered architecture: Fully splitting the client from the server
	Splitting clients

	Client versus server computing
	Web servers as stateless services
	Storing session data

	Use case: Applying a client-server architecture to the Pizza Place app
	Client server versus peer-to-peer
	Conclusion
	Questions
	References

	3. Designing APIs
	Structure
	Objectives
	What is an API?
	Functions as contracts

	Interfaces and design patterns
	Remote APIs: RPC, SOAP, REST, and GraphQL
	Building a remote API with RPC/gRPC
	Build the gRPC server
	Build the gRPC client
	When to use gRPC

	SOAP and web services

	Building REST APIs
	Actions versus HTTP request methods
	Naming resources
	Singular versus plural

	Relationships
	Versioning
	Caching

	Effective REST APIs: HATEOAS
	Building APIs with GraphQL

	Building standalone APIs
	Standalone API: Headless CMS
	Standalone API: Public APIs

	Use case: Designing a remote API for the Pizza Corner
	Conclusion
	Questions
	References

	4. End-to-End Data Management
	Structure
	Objectives
	Defining the application state
	Hardware storage

	Understanding in-memory data storage
	In-memory cache
	In-memory databases
	Simple storage in text and binary files

	Understanding complex data storage
	SQL or NoSQL?
	Document databases
	High locality
	Few relationships
	Unstructured data

	Relational databases
	Models are related but independent
	Multiple relationships
	Fixed structure
	Normalization

	Graph databases
	Data with a lot of connections
	Data where the relationships are first-class citizens

	Scalability
	File storage repositories
	Beyond technical requirements

	Indexing
	Reducing time complexity
	Example: Benchmark the impact of indexes in SQLite

	Backup and recovery
	Backup database files
	Creating backups with activity logs
	Backup through replication
	Tackling gaps in backups

	Designing data storage in a production system
	Choosing a deployment strategy
	Database and application share a server
	Deploy database in its own server(s)
	Embedded databases
	Combining databases to approach complex use cases

	Use Case: Defining a data model for the Pizza Place application
	Requirement: Users should be able to see the menu on their phones or computers
	No attributes, fixed size of ingredients
	No attributes, dynamic list of ingredients
	With attributes, dynamic size

	Choosing a data store for storing the pizza menu
	The winner
	Scaling the database

	Conclusion
	Questions
	References

	5. Automating Application Testing
	Structure
	Objectives
	Certainty through testing
	Manual testing
	Types of manual tests
	Building effective manual tests
	Creating a test plan
	Executing the test plan
	Creating detailed reports
	Validating fixes
	Update test plan

	Advantages of manual testing
	Explorability
	Horizontal validation
	User-centered vision

	Manual testing and Agile
	Let others test your code

	Automated testing
	Unit testing
	Testing in isolation: Doubles, stubs, and mocks
	Isolated code is easier to debug
	Isolating test dependencies
	Test mocks
	Stubs versus mocks

	Coverage
	To use coverage or not to use it

	Test-driven development

	Integration testing with Selenium
	Defining a test environment for integration testing
	Simulate a test environment close to production

	Testing and CI/CD
	Other automated tests: Static code analyzers
	Defining effective test cases
	Defining a single use case per test
	Do not mock everything
	On equal conditions, prefer unit tests over integration tests

	Non-functional testing
	Application security and penetration testing
	Load testing
	Performance testing
	Accessibility testing

	Conclusion
	References

	6. Securing Applications
	Structure
	Objectives
	The CIA triad: Confidentiality, Integrity, and Availability
	Confidentiality
	Loss of confidentiality

	Integrity
	Loss of integrity

	Availability
	Loss of availability

	Access Control: Authentication and authorization
	Authentication
	Identification: Username and password
	Problems with passwords
	Best practices for passwords
	Identification: Multi-factor authentication
	Single Sign-On

	Authorization
	Roles and groups
	Least privilege principle

	Use case: Implementing basic authentication and authorization for the Pizza Place
	Identify user roles
	Building an authentication service
	Define user management storage
	Define password-related protections
	Build web forms for signup and login
	Apply authorization controls
	Translate a high-level authorization map to implementation details
	Using scopes to check authorization
	Test access control

	Federated authorization
	Pros and cons of federated authentication
	Security Assertion Markup Language (SAML)
	OpenID
	OAuth2
	Terms
	Request an authorization code
	Request an access token
	The implicit flow
	Building OpenID from OAuth2

	Building security into the application’s design
	Creating a Threat Model
	Decompose the application
	Determine and rank threats
	Determine countermeasures and mitigation

	OWASP Top 10: The most common vulnerabilities
	Conclusion
	Questions
	Resources

	7. Handling Errors
	Structure
	Objectives
	Why do we need to handle errors?
	Understanding common causes of errors

	Types of error handling
	Exceptions
	Using stack traces to debug problems
	Defining exception types
	Catching exceptions
	Errors validated at compile time

	Errors as return values

	Implementing good exception handling
	Preventing all the errors we can
	Handling and mitigating errors in production
	Defining good error messages
	Bubble up!
	Providing a fallback
	Letting the error propagate

	Finding production errors with logging
	Anatomy of a log entry
	What to log?
	Designing good log and error messages
	Persisting log entries to file

	Handling errors in distributed systems
	Using case: Logging errors with the ELK stack
	Logging errors locally
	Configuring Logstash
	Logstash input
	Logstash filter
	Logstash output

	Installing and configuring Elasticsearch and Kibana
	Creating Kibana dashboards

	A/B testing and gradual deployment
	Creating a deployment plan

	Conclusion
	Resources

	8. Adopting Frameworks
	Structure
	Objectives
	What problems do frameworks fix?
	Solving existing problems
	Frameworks and design patterns
	Libraries and frameworks
	Pre-building abstractions

	Framework’s benefits

	Common patterns addressed by frameworks
	Automation tools and package managers
	Automation tools
	Native package management

	Handing web requests (e.g. Spring MVC, Django)
	How frameworks are born: The use of the Spring framework
	About MVC
	Dependency Injection
	Spring’s XML configuration
	Code-based configuration
	Annotation-based configuration
	Spring MVC
	More MVC: Express
	The downfall of MVC

	Database access with ORMs
	JPA and Hibernate
	Mapping tables to entities
	Inserting and querying data
	More ORMs: Python’s Django ORM
	The downsides of ORM

	Choosing a framework
	The impact of community

	When not to use frameworks
	Learning the framework instead of using the basics
	Adding debugging complexity
	Zero-cost abstractions

	Conclusion
	References

	9. Deploying Applications
	Structure
	Objectives
	Defining a robust deployment process: CI/CD
	Before CI/CD
	A step forward: Deployment scripts

	The advantages of a CI/CD pipeline

	Creating reproducible environments
	Moving out of shared environments
	Advantages of isolated and reproducible environments

	Version control
	Git
	Creating a Git repository
	Staging and committing new files
	Making changes to existing files
	Commit details
	Branches
	Merge
	Remote repositories
	Cloning repositories

	Merging conflicts
	Using Git hooks
	Git to enforce reproducible code
	SVN and other CVS

	Virtual machines
	Virtual infrastructure

	Containers (Docker)
	VMs versus containers

	Working with stateless containers
	Use case: Creating a reproducible deployment environment for the Pizza Place app using Git and Docker
	Setting up the application
	The web directory
	The nginx directory

	The docker-compose.yml and nginx.conf files
	Adding Git
	Docker in CI/CD
	The trade-off

	Conclusion
	Questions
	Resources

	10. Creating High-performance Apps
	Structure
	Objectives
	Measuring to improve the performance
	Synthetic testing versus RUM
	Using percentiles

	Improving the performance
	Improving the performance with caching
	Defining reading and writing load
	Cache patterns
	Cache-aside and read-through cache
	Caching write-heavy applications
	Write-through cache
	Write-behind cache
	Choosing the right caching strategy
	Eviction policy
	Other caching tools: Proxies and CDNs
	Use case: Caching long-running operations with Redis
	Using Jedis
	Using Redisson

	Improving the performance with distributed systems
	Keeping data consistency
	Data consistency in replicas
	Multiple read replicas, single write replica
	Eventual consistency versus strong consistency
	Data consistency in sharding

	Microservices
	Improving performance using asynchronous communication (queues)
	Improving the performance using asynchronous programming
	Promises and futures

	Conclusion
	Questions
	References

	11. Designing a System
	Structure
	Objectives
	The system design process
	Example: The Pizza Place (at scale)

	Defining and clarifying requirements
	Defining the system’s interface
	Defining data models
	Calculating the system scale and size
	Estimating the storage size
	Estimating QPS
	Estimating the storage throughput
	Calculating the cache size
	When to stop estimating the size

	Creating high-level and low-level designs
	Defining a high-level design
	Defining the use case flow
	Finding gaps in assumptions

	Defining a low-level design
	Designing the client
	Designing the web server
	Designing the service layer
	Designing the database layer
	Defining a distributed database strategy
	Defining read and write replicas
	About scaling the file storage

	Integrating each layer
	Client to server
	Web server to services
	Services to database
	Overall low-level design

	Identifying failure points
	Failure case: A web server goes down
	Failure case: A microservice instance goes down
	Failure case: The file storage service goes down
	Failure case: A node in the service queue goes down
	Failure case: A node in the cache layer goes down
	Failure case: A database server goes down
	Failure case: The infrastructure for a whole region goes down
	Extra considerations about failure management

	Conclusion
	Questions
	Resources

	12. Bootstrap Your Career Path
	Structure
	Objective
	Defining the expectations on junior developers
	Joining our first development team
	Following guidance from other developers

	What makes a senior developer?
	Characteristics of a senior software developer

	Improving hard and soft skills
	Improving technical skills
	Improving people skills
	Practicing conflict resolution
	Working on communication skills

	Preparing for technical interviews
	Getting an interview
	Building a good resume
	The importance of networking

	Improving interview skills
	The technical interview process
	Approaching coding problems
	Using data structures efficiently
	Using algorithms efficiently
	Coding a solution
	Getting better at coding interviews
	Working on system design interviews
	Take-home assignments
	Approaching non-coding modules
	Asking the right questions

	Finding mentors
	Finding resources to keep learning
	Conclusion
	Resources

	Index

