Backend
Developer

Acquire Skills on API Designing, Data Management, Application Testing,
Deployment, Security and Performance Optimization

Backend
Developer

Acquire Skills on API Designing, Data Management, Application Testing,
Deployment Security and Performance Optimization

- "'\J‘\

. o o
3 5’ "q
#ﬂ w\,\\a \f‘t".): i'..‘

q et

.

f & -
'h.__'\ s L i

PEDRO MARQUEZ-SOTO

Backend
Developer in
30 Days

Acquire Skills on Api Designing,
Data Management, Application Testing,
Deployment, Security and Performance

Optimization

Pedro Marquez-Soto

www.bpbonline.com

http://www.bpbonline.com/

Copyright © 2022 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor BPB Online or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, BPB Online cannot
guarantee the accuracy of this information.

Group Product Manager: Marianne Conor
Publishing Product Manager: Eva Brawn
Senior Editor: Connell

Content Development Editor: Melissa Monroe
Technical Editor: Anne Stokes

Copy Editor: Joe Austin

Language Support Editor: Justin Baldwin
Project Coordinator: Tyler Horan
Proofreader: Khloe Styles

Indexer: V. Krishnamurthy

Production Designer: Malcolm D'Souza

Marketing Coordinator: Kristen Kramer

First published: August 2022

Published by BPB Online
WeWork, 119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE
ISBN 978-93-55513-212

www.bpbonline.com

http://www.bpbonline.com/

Dedicated to

My beloved wife Alejandra
&

My sons Santiago and Bruno

About the Author

Pedro Marquez Soto is a full-stack software developer with a Master of
Science in Computer Science and Machine Learning. He has more than 10
years of professional experience in multiple roles that cover application
security, back-end, front-end development, and infrastructure development.
He currently works as a full-stack engineer at LinkedIn.

Acknowledgement

There are a few people I want to thank for the continued and ongoing
support they have given me during the writing of this book. First and
foremost, I thank my wife and friend Alejandra for her unconditional love
and support in all my professional ventures. This book was only possible
because she believed in me; she had the patience of having a husband who
spent hours locked in the office, writing.

I wrote this book in the middle of a pandemic while at the same time I was
completing my master's degree. The only thing that kept me on track was
having the safe space of a loving family and their support for me to pursue
my passions.

I want to thank my mom, Josefina, who has worked tirelessly to provide her
kids with an education; without all her hard work and love I would have
never had acquired the knowledge needed for writing this book. I also want
to thank my father Pedro for teaching me to never give up, especially when
life gets hard.

I am grateful to all the official and unofticial mentors I’ve found during my
lifetime. Managers and other smart people I’ve met in the past decade who
gave me the opportunity of working on interesting projects that led to
constant professional improvement. These people were honest when my
code was not as good as it could be and showed me how world-class
software developers work.

My gratitude also goes to the team at BPB Publications for giving me the
opportunity to write my first book and providing guidance during this
process that was new to me. They gave me the right amount of freedom and
support that allowed me to complete this daunting task. BPB Publications is
the best home this book could have, and for that, I will be forever thankful.

Even if my name is on the cover of this book, this project is a team effort.
All these people are co-authors, and no author should be ungrateful enough
to forget that.

Preface

This book covers the process of building large-scale software applications
from the point of view of a back-end developer. More than a tutorial on
specific tools or frameworks, this book outlines principles and processes
shared across the multiple tech stacks. Tools and frameworks change with
time: they are replaced by newer stacks; the patterns, however, remain the
same. The goal is to show you how things work and why they work the way
they do.

This book connects different areas commonly isolated in educational
material: API development, database integration, application security, and
deployment processes. It gives an integral vision of how the largest
software companies build software capable of serving millions of users.
This vision benefits people starting their careers as software developers and
those who have spent most of their careers working on only one of these
areas.

This book has 12 chapters chronologically ordered to follow the phases of a
software development project. Ideally, you could take this book with you
and read across each chapter in order as your project evolves. Each chapter
builds on the previous, so it is advised for you to read from start to end.
However, each chapter is also self-contained enough for you to return to
any of them when you need to refresh your knowledge.

The first part of the book covers the essential aspects of back-end
development. It outlines the process of converting business needs into
requirements, defining elegant APIs that are flexible enough to evolve with
the application, and choosing the correct type of database. This first part
also offers a deep dive into the inner workings of web-based applications,
building a robust mental model that will allow you to fully grasp the
abstractions built on top of them.

The second part covers patterns and processes needed to build quality into
software applications: Testing, application security, error and log
management, framework adoption, and continuous integration and

deployment. These concepts are the basis for the daily work of software
developers across the globe.

The third and last part of the book serves two purposes: Describe how to
jump from simple apps to large-scale, distributed systems and concepts that
you can use to advance your career and become a senior developer.

Chapter 1 covers the topics of problem-solving and requirements
gathering. It provides background on the importance of software
applications as tools to solve problems. This chapter gives you useful
heuristics to successfully recollect business requirements in an iterative
process. Then, the chapter provides a high-level view of large-scale
software applications and all the components and tools that address the
functional and non-functional requirements for the project.

Chapter 2 is a deep dive into web-based applications and the client-server
architecture. It details the inner workings of web servers, guiding you to
create your own Java-based web server and compare it with production-
ready servers like NodelJS’s Express. This detailed view helps you
understand the “magic” behind these tools, which is a critical skill for
becoming a senior developer.

Chapter 3 disambiguates the term “API”. It explains what APIs are, why
they are useful to back-end developers, and how they fit in the process of
creating an application. Then, the chapter guides you on how to design
flexible, data-driven APIs and how to choose the right tools to implement
them: REST, GraphQL, and gRPC.

Chapter 4 will cover state and data management, which includes databases.
It provides background on why we need databases, how to model real-life
data, and how to choose the proper database for your business needs. This
chapter covers the differences between SQL and NoSQL, and highlights the
differences between the most common products for each, like relational,
document, and graph databases.

Chapter 5 explores the area of testing. It details the manual and automated
testing process and highlights the differences between concepts like mocks,
stubs, and test doubles. This chapter also provides good practices for
writing unit and integration tests and their differences. Then, it describes
other areas of non-functional testing like performance and security testing.

Chapter 6 covers application security. This chapter defines the concepts
used by application security experts that any software developer should
know. It describes how to integrate authentication and authorization
services into the application, including industry standards like OAuth2,
SAML, and OpenlID Connect. This chapter also covers some of the most
common security vulnerabilities and advises how to prevent them.

Chapter 7 explains the topic of error and log management in software
applications. It highlights how some coding languages deal with errors, how
to find errors in applications deployed to production environments, and how
to centralize and monitor errors in distributed applications using tools like
Logstash, Elastisearch, and Kibana.

Chapter 8 covers a deep dive into application frameworks. The chapter
explains what frameworks are, what they are used for, and the patterns they
use to solve everyday challenges for back-end developers. It then introduces
popular frameworks like Java’s Spring and Hibernate and Python’s Django.
It contrasts how patterns like MVC are implemented in these frameworks
and provides the groundwork for developers to pick the proper framework
for their use case.

Chapter 9 describes how to deploy an application to a production
environment. It gives some historical background on how applications have
been delivered to users, the challenges faced, and how modern CI/CD
(Continuous integration and deployment) flows enable development teams
to deliver their applications fast. We also explore the concept of replicable
environments through virtualization using Virtual Machines and Docker
containers and how they integrate into the CI/CD process.

Chapter 10 presents advanced topics for creating large-scale, distributed
applications. The chapter covers how to measure performance to find
improvement opportunities. Then, we explore techniques to improve
performance like caching, asynchronous architectures, and asynchronous
programming through the concepts of “Promises” and “Futures”. It presents
some tools used to increase performance in large applications like Redis
and Kafka.

Chapter 11 takes a step back and integrates every previous chapter into one
process for designing a software application. The chapter describes a step-
by-step approach to converting requirements into technical specs,
estimating server and storage size requirements, and principles used for

scaling apps. This process is a blueprint that is especially useful for system
design interviews.

Chapter 12 the last chapter in this book, outlines career advice for back-
end developers looking to become senior developers. It describes the typical
responsibilities of both junior and senior developers, and it provides
guidelines for preparing for tech interviews, finding mentors, and finding
resources to keep increasing your technical knowledge.

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/suehS5f

The code bundle for the book 1s also hosted on GitHub at

case there's an update to the code, it will be updated on the existing GitHub
repository.

We have code bundles from our rich catalogue of books and videos

Errata

We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to

https://rebrand.ly/sueh55f
https://github.com/bpbpublications/Backend-Developer-in-30-Days
https://github.com/bpbpublications
mailto:errata@bpbonline.com

the eBook version at www.bpbonline.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in
touch with us at: business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on BPB books and eBooks.

http://www.bpbonline.com/
mailto:business@bpbonline.com
http://www.bpbonline.com/

Piracy

If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an
author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit
www.bpbonline.com. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insights
with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why
not leave a review on the site that you purchased it from? Potential
readers can then see and use your unbiased opinion to make purchase
decisions. We at BPB can understand what you think about our
products, and our authors can see your feedback on their book.
Thank you!

For more information about BPB, please visit www.bpbonline.com.

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/

Table of Contents

1. Building Multi-User Apps
Structure
Objective
Digital transformation and a little history
Digital transformation and the Internet
Software transformation
Designing apps to solve real-world problems
Caring for user problems as a back-end developer
Finding a problem to solve
Define a sample use case: The Pizza Place ordering system.
Defining functional and non-functional requirements
An ineffective way of collecting requirements
The requirement definition cycle
Find out what is the problem your client is trying to solve
Get a detailed picture of the business.
Request the help of one of your client s domain-experts
Learn how the existing process works today,
Build prototypes and revise requirements
Use case: Defining requirements for the Pizza Place
The modern system design: a ten thousand-feet view
Getting the front-end out of the way
Building blocks
Conclusion
Questions

2. The Client-Server Architecture
Structure
Objectives
Architecture details
Abstraction layer: Frontend client and backend client
Abstraction layer: Data access service client, database server
HTTP: The language of the web

Implementing a web server

The main process

Serving a response

Multi-user support with multi-threading
Using a production-ready server

Enabling HTTPS in Express

Splitting clients
Client versus server computing
Web servers as stateless services

Storing session data
Use case: Applying a client-server architecture to the Pizza Place app
Client server versus peer-to-peer
Conclusion
Questions
References

3. Designing APIs
Structure
Objectives
What is an API?
Functions as contracts
Interfaces and design patterns

Building a remote API with RPC/gRPC
Build the gRPC server
Build the gRPC client
When to use gRPC
SOAP and web services
Building REST APIs
Actions versus HTTP request methods
Naming resources
Singular versus plural
Relationships
Versioning
Caching
Effective REST APIs: HATEOAS

Building APIs with GraphQL
Building standalone APIs
Standalone API: Headless CMS
Standalone API: Public APIs
Use case: Designing a remote API for the Pizza Corner
Conclusion
Questions
References

4. End-to-End Data Management

Structure
Objectives
Defining the application state
Hardware storage
Understanding in-memory _data storage
In-memory cache
In-memory databases
Simple storage in text and binary files
Understanding complex data storage
SOL or NoSQL?
Document databases
High locality
Few relationships
Unstructured data
Relational databases
Models are related but independent
Multiple relationships
Fixed structure
Normalization
Graph databases
Data with a lot of connections
Data where the relationships are first-class citizens
Scalability
File storage repositories
Beyond technical requirements
Indexing
Reducing time complexity

Example: Benchmark the impact of indexes in SQLite
Backup and recovery

Backup database files

Creating backups with activity logs
Backup through replication
lackling gaps in backups

Choosing_a deployment strategy

Database and application share a server
Deploy database in its own server(s)
Embedded databases

Combining databases to approach complex use cases

Use Case: Defining a data model for the Pizza Place application
Requirement: Users should be able to see the menu on their phones

or computers

No attributes, fixed size of ingredients
No attributes, dynamic list of ingredients
With attributes, dynamic size
Choosing a data store for storing the pizza menu

The winner
Scaling the database

Conclusion

Questions

References

S. Automating Application Testing
Structure

Objectives
Certainty through testing
Manual testing
Dypes of manual tests
Building effective manual tests
Creating a test plan
Executing the test plan

Creating detailed reports
Validating fixes
Update test plan

Advantages of manual testing
Explorability
Horizontal validation
User-centered vision
Manual testing and Agile
Let others test your code
Automated testing
Unit testing
Testing in isolation: Doubles, stubs,_and mocks
Isolated code is easier to debug
Isolating test dependencies
Test mocks
Stubs versus mocks
Coverage
1o use coverage or not to use it
lest-driven development
Integration testing with Selenium
Defining a test environment for integration testing
Simulate a test environment close to production
Testing and CI/CD
Other automated tests: Static code analyzers
Defining effective test cases
Defining a single use case per test
Do not mock everything
On equal conditions, prefer unit tests over integration tests
Non-functional testing
Application security and penetration testing
Load testing
Performance testing
Accessibility testing
Conclusion
References

6. Securing Applications
Structure
Objectives
The CIA triad: Confidentiality, Integrity, and Availability,

Confidentiality

Loss of confidentiality
Integrity,
Loss of integrit)
Availability
Loss of availability
Access Control: Authentication and authorization
Authentication

Identification: Username and password
Problems with passwords
Best practices for passwords
Identification: Multi-factor authentication
Single Sign-On
Authorization
Roles and groups
Least privilege principle
Use case: Implementing basic authentication and authorization for the
Pizza Place

Identify user roles
Building an authentication service
Define user management storage
Define password-related protections
Build web forms for signup and login
Appbh; authorization controls
Translate a high-level authorization map to implementation
details
Using scopes to check authorization
Test access control
Federated authorization
Pros and cons of federated authentication
Security Assertion Markup Language (SAML)
OpenlD
QAuth2
Terms
Request an authorization code
Request an access token
The implicit flow

Building OpenlD from QAuth?2

Building security into the application’s design
Creating a Threat Model

Decompose the application

Determine and rank threats

Determine countermeasures and mitigation
OWASP Top 10: The most common vulnerabilities
Conclusion
Questions
Resources

7. Handling Errors
Structure
Objectives
Why do we need to handle errors?
Understanding common causes of errors
Types of error handling
Exceptions
Using stack traces to debug problems
Defining exception types
Catching exceptions
Errors validated at compile time
Errors as return values
Implementing good exception handling
Preventing all the errors we can
Handling and mitigating errors in production
Defining good error messages
Bubble up!
Providing a fallback
Letting the error propagate
Finding production errors with logging

Anatom), of a log entry
What to log?

Designing good log_and error messages

Persisting log entries to file
Handling errors in distributed systems

Using case: Logging errors with the ELK stack

Logging errors locally
Configuring Logstash
Logstash input
Logstash filter
Logstash output
Installing and configuring Elasticsearch and Kibana
Creating Kibana dashboards
A/B testing and gradual deployment
Creating a deployment plan
Conclusion
Resources

8. Adopting Frameworks
Structure
Objectives
What problems do frameworks fix?
Solving existing problems
Frameworks and design patterns
Libraries and frameworks
Pre-building abstractions
Framework's benefits
Common patterns addressed by frameworks
Automation tools and package managers
Automation tools
Native package management
Handing web requests (e.g. Spring MVC, Django)
How frameworks are born: The use of the Spring framework
About MVC
Dependency Injection
Spring s XML configuration
Code-based configuration
Annotation-based configuration
Spring MVC
More MVC': Express
The downfall of MVC
Database access with ORM:s
JPA and Hibernate

Mapping tables to entities

Inserting and querying data

More ORMSs: Python's Django ORM
The downsides of ORM

Choosing a framework
The impact of community

When not to use frameworks
Learning the framework instead of using the basics
Adding debugging complexity

Zero-cost abstractions

Conclusion
References

Structure

Objectives

Defining a robust deployment process: CI/CD
Before CI/CD

A step forward: Deployment scripts

The advantages of-a CI/CD pipeline

Creating reproducible environments
Moving out of shared environments

Advantages of isolated and reproducible environments

Version control

Git

Creating a Git repository
Staging and committing new files
Making changes to existing files
Commit details

Branches

Merge

Remote repositories

Cloning repositories

Merging conflicts
Using Git hooks

Git to enforce reproducible code

SVN and other CVS

Virtual machines
Virtual infrastructure
Containers (Docker)
VMSs versus containers
Working with stateless containers
Use case: Creating a reproducible deployment environment for the
Pizza Place app using Git and Docker
Setting up the application
The web directory
The nginx directory,
The docker-compose.yml and nginx.conf files
Adding Git
Docker in CI/CD
The trade-off
Conclusion
Questions
Resources

10. Creating High-performance Apps
Structure
Objectives
Measuring to improve the performance
Synthetic testing versus RUM
Using percentiles
Improving the performance
Improving the performance with caching
Defining reading and writing load
Cache patterns
Cache-aside and read-through cache
Caching write-heavy applications
Write-through cache
Write-behind cache

Eviction policy,

Other caching tools: Proxies and CDNs

Use case: Caching long-running operations with Redis
Using Jedis

Using Redisson
Improving the performance with distributed systems
Keeping data consistency
Data consistency in replicas
Multiple read replicas, single write replica
Eventual consistency versus strong_consistency,
Data consistency in sharding
Microservices
Improving performance using asynchronous communication
(queues)
Improving the performance using asynchronous programming
Promises and futures
Conclusion
Questions
References

11. Designing a System
Structure
Objectives
The system design process
Example: The Pizza Place (at scale)
Defining and clarifying requirements
Defining the system’s interface
Defining data models
Calculating the system scale and size
Estimating the storage size
Estimating OPS
Estimating the storage throughput
Calculating the cache size
When to stop estimating the size
Creating high-level and low-level designs
Defining a high-level design
Defining the use case flow
Finding gaps in assumptions
Defining a low-level design
Designing the client
Designing the web server

Designing the service layer
Designing the database layer
Defining a distributed database strategy
Defining read and write replicas
About scaling the file storage
Integrating each layer
Client to server
Web server to services
Services to database
Qverall low-level design
Identifying failure points
Failure case: A web server goes down
Failure case: A microservice instance goes down
Failure case: The file storage service goes down
Failure case: A node in the service queue goes down
Failure case: A node in the cache layer goes down
Failure case: A database server goes down
Failure case: The infrastructure for a whole region goes down
Extra considerations about failure management
Conclusion
Questions
Resources

12. Bootstrap Your Career Path
Structure
Objective
Defining the expectations on junior developers
Joining our first development team
Following guidance from other developers
What makes a senior developer?
Characteristics of a senior software developer
Improving hard and soft skills
]mproving technical Skills

Practicing conﬂzct resolution
Working_ on communication skills
Preparing for technical interviews

Getting_an interview
Building a good resume
The importance of networking

Improving interview skills

The technical interview process
Approaching coding problems
Using data structures efficiently
Using algorithms efficiently
Coding a solution
Getting better at coding interviews
Working on system design interviews
lake-home assignments
Approaching non-coding modules
Asking the right questions

Finding mentors

Finding resources to keep learning
Conclusion

Resources

Index

CHAPTER 1
Building Multi-User Apps

S olving problems is a software developer’s primary job; we dedicate our
careers to gaining the skills we need to be efficient problem-solvers. We
learn computer languages, frameworks, libraries, and design patterns to
build a diverse toolset to tackle the great variety of problems this world
offers.

In this chapter, we will talk about problem-solving: we will discuss how the
problems human beings have found across history have evolved. We will
see that technological advances are cyclical, and understanding these
patterns will help us predict the problems we may find in the future and
design better solutions.

We will also discuss what kind of problems we can fix today and how we
can translate problem statements into technical challenges for which we can
offer software-based solutions.

Then, we will move on to effectively capture all the requirements for a new
project, describing some obstacles we may find in the process and good
practices to sort them out.

Ultimately, we will have a high-level view of the variety of tools available
to us to build software applications. In later chapters, we will explore these
tools in detail, but we will use this chapter first to understand how they all
fit together.

Structure

In this chapter, we will learn the following topics:

e Digital transformation and a little history
o Digital transformation and the Internet

e Designing apps to solve real-world problems

o Caring for user problems as a back-end developer
o Finding a problem to solve

e Defining a sample use case: The Pizza Place ordering system.
e Defining functional and non-functional requirements

o An ineffective way of collecting requirements
o The requirement definition cycle

e The modern system design: a ten thousand-feet view

Objective

After completing this chapter, you should clearly understand the primary
goal of software developers: To solve real-world problems.

By the end of this chapter:

 You will understand how to find good problems to solve as a
developer.

e You will realize that we must find a problem to solve before trying to
build an app.

e You will have a list of heuristics to efficiently define functional and
non-functional requirements and know which practices to avoid.

e You will understand the tools available to us for building modern
applications.

Digital transformation and a little history

During the second half of the 18th century, a transformation started in
Europe: Goods crafted by hand began to be manufactured by machines.
Powered by steam and later on by electricity, these machines allowed
people to produce goods faster and for less money; with lower production
costs, manufacturers could reach more consumers than ever.

This period, known as the Industrial Revolution, changed how the business
operated and profoundly transformed society. Rural communities started to
grow into urban spaces. Cities that were geographically apart increased
communication and trade thanks to advances in transportation (like the

creation and improvement of trains and steam-powered boats). Small
communities started merging into larger ones.

People moved into cities as many agrarian jobs were replaced by industrial
work. Change is never easy, but it was a specifically difficult transition for
many people whose current skills were not always valuable for the new job
market. Artisans who couldn’t compete with the large production machines
had to adapt if they wanted to keep providing for their families.

Jobs became more specialized, and workers needed instruction to operate
the new machines, so new schools and apprenticeships were created. With
people concentrated in urban communities, education also was streamlined.
Formal education and professions became ubiquitous.

To speed everything up, money was also concentrated in cities where the
manufacturing plant owners could now produce more for less. A
concentration on resources lead to inequality by tut also allowed more
investment in technological advances, which led to the improvement of the
same machines that started this transformation.

A Second Industrial Revolution brought mass-production through
electricity, and a Third Industrial Revolution brought automation through
electronics and information technology. Each of these new phases was built
on the top of the previous one, each one with a more extensive reach.
Industrialization became digitalization.

People were forced to adapt in each of these revolutions, not always without
resistance.

Note: As it happened then, people in the present have the same kind
of fear of change and incertitude. People are afraid some professions
can become obsolete due to advances in Artificial Intelligence,
resulting in people losing their jobs.

The term “Luddite” was created to describe people who disliked new
technology and its threat to their interests like job security and
privacy.

Many make fun of people who dislike technological advances, but we
seldom try to empathize. The industrial and digital revolutions have
not been perfect nor socially fair. There is still much debate on how
the industrial revolution improved people’s quality of life beyond the

apparent riches it gave to the few owners of fabrics and their social
circles.

Some anthropologic studies have found that inequality grew in the
United Kingdom during the industrial revolution as ‘“early
industrialization disproportionately benefitted capital more than
other factors of production”:

https://www.econstor.eu/bitstream/10419/201834/1/1671601041.pdf

This same conversation about technology and inequality is happening
today when CEOs and founders of technology companies are the
wealthiest people in the world.

Feeling anxious about technological progress is expected.
Understanding how people were historically able to adapt to new
emerging social dynamics gives us an insight into how to prepare
society for the future.

As the group that constantly introduces change, it’s part of our job to
make sure we do everything in our power to guarantee that
technology advances take into account issues like inequality or
privacy.

As the digital era started and technology became more than just steam
machines, people’s lives and needs also kept changing.

Digital transformation and the Internet

Suppose charted the amount of technological progress as a function of time.
That chart would show that progress has been exponential since the start of
the first industrial revolution. As time advances, we take higher
technological leaps.

We have seen more technological changes in the last couple of decades than
in the previous 200 years, and we’re only starting. We now live in a digital
world, and the advances in fields like Machine Learning, Al, and quantum
computing are only accelerating our adoption of it.

https://www.econstor.eu/bitstream/10419/201834/1/1671601041.pdf

Tip: CPUs are a good reference for how technology advances.
Moore’s Law, even as we are testing its limits lately, describes how the
capacity of processors increases exponentially in time. Technological
advancement has progressed like CPUs have: as time passes, the
world changes at a faster pace; breakthroughs happen more often.

Since we as humans have lived this intense and accelerated transformation
before, we can get answers to a few questions we have today. For instance,
many people wonder what will happen when Al starts executing jobs that
people have today. Still, as we just saw, people always find a way to adapt,
even at the cost of an intense social change and a redistribution of
resources.

Just as our needs and how we fulfill them changed during the first phases of
the Industrial Revolution, the creation and wide adoption of the Internet
have transformed humanity: The Internet is the platform on which the Third
and Fourth Industrial Revolutions are built.

People’s needs are now more complex and abstract. For instance, social
needs go beyond interacting with peers in their direct communities; we are
now part of social groups not limited by distance or time. People expect to
be connected, even living in a different country or continent.

A whole generation of people now prefers to order food online than order
using the phone or just walking into a restaurant. We pay our bills online.
New movies and TV shows are being premiered online instead of through
movie theaters or cable subscriptions. Podcasts are now as ubiquitous as
radio. Music streaming has displaced the consumption of CDs.

Technology is still changing people’s roles in society, and as software
developers, we need to understand and take advantage of that knowledge.
Just as when the farmer had to learn how to operate manufacturing
machines, people creating and streaming digital content (e.g., YouTubers)
are jobs that are increasingly replacing traditional professions (many of
them are destined to be consumed by Al).

Software developers who have understood the new needs of our ever-
changing society have built the tools on which these new professionals
operate -making millions in the process.

Software transformation

The field of software development is everything but static. Few software
developers get to work on the same technology all their careers. Adapting
and learning new technologies is an essential requirement for our
profession. The best software developers understand change and adapt to it.

The Internet itself has changed. The web stopped being the collection of
unidirectional static content it once was; it’s now a highly dynamic platform
that enables communication back and forth between the owners of the
websites and the users. Modern applications provide value based on the
information they receive from their users.

Our users themselves have changed: the Internet is not the place only for
the technically savvy, the academics, or the hobbyists that it once was.
Thanks to years of hard work from brilliant people and experts in Human-
Computer interaction, the Internet is now a democratic space where you
don’t need any understanding of how software is built to use it. Users are
now grandparents, professionals from any area of specialization, and even
toddlers.

The scale of software has increased due to the expansion in the use of the
Internet. Web servers now have so many users that a single powerful
computer is not enough to serve requests to all of them. The data that
modern applications consume don’t fit in a single machine, even
considering the high-capacity hard drives we’ve been able to develop in
recent years.

The software development process keeps changing, too: We don’t build
code only for computers anymore; we build applications that now run on
smartphones, TVs, and even toasters or fridges. And you don’t need a Ph.D.
or even a college education to build code: Teenagers are making millions of
dollars selling apps they create in their spare time.

One thing doesn’t change, though: People still have problems that need
solutions. Even with the advances we just described, millions still can’t get
the essential services and resources they need to survive. The portion of
humanity who can take advantage of technology has solved their basic
needs so well that they have time and resources to worry about other, more
abstract problems.

Designing apps to solve real-world problems

Many software developers forget a simple but critical principle: Apps are
tools. They are a means to an end, even if the end itself is too abstract or
frivolous. And most of the time, the software itself isn’t that end.

Software developers love to build applications, and that love makes us
forget that most of the time, we build applications for someone other than
ourselves.

The startup accelerator Y Combinator offered a series of lectures at
Stanford University in 2014 titled “How to Start a Startup”. In those
lectures, a question arose: How to choose the topic or idea on which you
could base your company. The proposed solution: Find a problem your
users may have and find a solution; it doesn’t matter how big or small the
problem is, as long as it’s a real-world problem.

Many startups fail because they focus more on the technology they are
using than on creating something that helps people. They spend too much
money and time getting the hottest tech stack, the most complex
frameworks. For these failed companies, all these layers of complexity hide
a single truth: There’s no real problem to fix, no user that needs their
products.

Other companies might have a real problem to solve but still miss the mark.
They will again try to build something complex, too smart for their own
good. They could have built a more straightforward solution with less
“cool” technology for considerably less money and still give solutions to
their users.

Your users don’t care if you used Java or Python to build the app they need.
The only people who care about those things are other developers, who are
not your primary target most of the time. Without a real problem to solve,
apps are nothing more than fun mental exercises for the developers who
create them.

And we are not saying that you can’t build code just because you enjoy it.
But when you’re getting paid by someone else to do it, creating an app that
works correctly is a priority.

Tip Search term: creative coding.

There is a type of computer programming that is not based on solving
problems: Creative coding. This non-functional coding is focused on
creating abstract representations like artistic work, visuals, or audio.

Companies like Google have created events for people to build code as
a way of artistic expression, and it’s a field we, as software developers,
are only starting to explore. Many front-end developers use CSS to
build visual works in the browser that push the limits of web
technology.

Just like you would paint a picture or write a song to have fun and
express yourself, consider creating code for more than starting your
own business or making money.

Caring for user problems as a back-end developer

Backend developers work at a layer that is abstracted away from the users:
Non-technical users will struggle to see the direct connection between your
work and the app they use and love.

This abstraction is normal, as it’s common for back-end developers to work
in less user-centered tasks: Dealing with servers, APIs, and connecting to
databases. Frontend developers, on the other hand, tend to work with more
user-centered requirements because their main goal is building the interface
with which the users will work directly.

This disconnection challenges back-end developers: It’s easy to lose sight
of the problems we are trying to fix with our app. You can spend months or
even years in your career not knowing how or if the application you’re
working on addresses the right solutions your clients need.

This 1s why we put so much emphasis on problem-solving at the beginning
of this book because it has to be our guiding principle as software
developers. You will be a considerably more successful back-end engineer
if you don’t forget about your users, even if they don’t directly use the code
you build.

Finding a problem to solve

The chances are that in some moment of your career as a back-end
developer, you will have to work with your team to find a new project to

work on. It could be finding a mission for your new startup or starting a
new project within your existing company. Focusing on problem-solving
will lead to a more optimal assignment of your team resources.

Most of the problems we find revolve around two possibilities: Problems
that don’t have a solution yet, and problems that do have a solution, but it is
not good enough or only works for a small group of people.

Trying to find problems without a known solution it’s complicated: it’s
human nature to try to fix things that don’t work, so either problems get
solved relatively soon, or problems remain unsolved because solutions are
complex or nonexistent. If you’re lucky to find a solution for a problem that
hasn’t been solved before, go ahead and work on it; but feel free to work on
problems that can be solved better.

Note: “Smaller” problems tend to be often ignored by developers. We
focus on finding big problems because we think it will increase our
chances of success; the more people will use the solution we build for
them, the more recognition and revenue we get. However, thinking in
terms of “big” or “small” problems is not the optimal approach.

In his talk, “Competition is for Losers” Peter Thiel talks about how
Startups that focus on niche markets have a bigger chance to succeed
just because they have less competition. Narrowing the scope of your
project to solve just one simple problem (and solve it well) leads to
having more time and resources to explore different solutions.

We should not assume that the existing solutions for known problems
are always the best approach. Problems tend to change faster than
solutions do, so implementations become outdated. Use this
knowledge to keep your mind and eyes open to new, better solutions.

Diversity is a significant point to consider when finding problems to solve.
A common problem with existing apps or solutions is that the solution they
provide only works for a specific group of users.

For instance, look at video or picture editing apps. Applications like Adobe
Premiere or Adobe Photoshop have existed for many years, but their target
has always been experienced users who have very specialized knowledge of
the field. Nowadays, thanks to smartphones and apps you can get for free,
anyone can edit photography and video with professional quality.

Many software developers assume all their users are part of the same
demographic group. Historically, software was always built for expert users
first. Innovative companies like Apple recognized the importance of
building products for non-experts; they owe their success to this
democratization of technology.

There 1s one simple yet powerful fact: You are not your user.

You are the expert on each app you write: It will be evident to you how to
use each feature because you wrote them and tested them daily. So, when a
user comes to you and tells you they don’t know how to use it, it can be a
bit frustrating since it’s something obvious to you.

It is a common misconception that the solution that works for you will work
for everyone. Even when you are part of the group of users your app targets,
your opinion about how the app should work is inherently biased. That’s
why it’s essential to talk with your users directly.

The more you understand how diverse your user base is, the easier it will be
for you to find their challenges and better tailor solutions for them.

Define a sample use case: The Pizza Place
ordering system.

Early in any back-end developer’s career, it’s normal to feel overwhelmed
by the lack of experience in real-world projects. At that point, most of the
projects we’ve worked on are either:

e Projects for school or coding camp, where you are allowed to skip
multiple steps from the software development process due time
constraints.

e Existing projects to which you joined long after the main technical
designs and decisions were made.

It’s not until later in your career that you will have the opportunity to work
on a project from its inception, finding a problem to solve and making
decisions based on your user’s needs.

Through this book, we will visit multiple techniques to build the back end
for production-level apps, and we will connect them with a narrative that

will let you get experience in areas previously unexplored for you. For that,
let’s start with the problem to solve.

There’s a small pizza restaurant called “The Pizza Place” in your
neighborhood. They only have a couple of employees today, but the
manager is a brilliant lady with a long-term vision: Build great pizzas with
quality ingredients at accessible prices. She’s worried that the pizza local
kids are buying is not healthy enough for them, so she wants to offer pizzas
cooked with clean, fresh ingredients.

The Pizza Place already offers dine-in but wants to start taking online
orders. The manager doesn’t want to lose a hefty commission to an existing
online food ordering service, so she and her husband decide the solution is
to invest in building their custom ordering app. Yes, it will be expensive at
first, but after running the numbers, they will save a lot of money in the
long run.

You and two of your colleagues have just founded a new startup focused on
helping local businesses to join the new digital era: You’re the lead back-
end developer, and the other two are a front-end developer/designer and a
salesperson.

The Pizza Place owner sees one of the ads you posted online, and she truly
believes you can help her achieve her dream of bringing great pizza to
everyone. She reaches out to you and your team to build their ordering
system. You all schedule a call to go through the details.

Defining functional and non-functional
requirements

It’s well known that one of the first steps in a new project is gathering user
requirements. We often split requirements in two:

e Functional or business requirements: These are the primary goals of
the application, the things your clients care about: the main problem
and the abstract solution to it.

e Non-functional requirements: This is the definition of the system
elements needed to implement the proposed solution to the functional
requirements. This covers how many servers you will need, what kind
of database, etc.

It 1s assumed that you have read multiple times about the differences
between these requirements, so we will not go further in those details. What
1s important is that having a detailed list of requirements will help us choose
the right pieces to build the best application we can.

Tip: Mental model: Defining requirements works very similarly to the
Math concept of linear programming: You have an objective equation
you need to optimize by finding variable values that optimize a target
function, but there is an infinite combination of values you could use.

By considering a set of constraints (multiple equalities or
inequalities), we can discard all the variable values that don’t
contribute to getting the best results for our objective equation.

In our case, the system requirements are the constraints that allow us
to delimit the scope of the problem we’re trying to fix. We can find the
optimal combination of tools like databases or code libraries by
looking at the area delimited by our requirements.

While math is a common skill for software engineers, don’t worry if
you are unfamiliar with linear programming, as we will not use it in
this book. This is only an example to help build a more robust mental
model for those who have previously seen this kind of problem.

We often talk about requirements but not how to define them effectively.
Many developers expect clients to define their own functional requirements
with misguided questions like “what do you want the app to do?”.

Some clients have a good idea of what they want, but most won’t. It’s your
job as a software developer to hold their hands for this part of the process to
find the best solution for them.

An ineffective way of collecting requirements

A good starting point for understanding the process of collecting
requirements is a real example. Let us discuss the experience of a developer
(who may or may not be the author of this book) and the failures he had
early on in his career. There is no better learning opportunity than making
tons of mistakes.

A couple of years into this developer’s career, he oversaw recollecting the
system requirements for a prospective client. He contacted the client’s
company manager to schedule some meetings to define the requirements.
He scheduled three sessions out of “an abundance of caution”. To make
sure he got all the requirements right.

During the meetings, he asked the manager what he wanted the app to do.
The manager talked about how the business worked, and the developer and
his team asked all the questions they could think of. They took many notes
and drew many diagrams. By the end of the three-day business requirement
gathering, they felt like a subject matter expert in the client’s business.

Fast-forward a couple of weeks later; they start coding the application. As
they built the user interface defined in their diagrams, they started having
questions—a lot. Their questions ranged from not knowing what the
application should do in specific corner cases to having completely
misunderstood the contents of a dynamically generated report that the app
was supposed to render.

How was this developer supposed to tell his manager they had to schedule
more meetings with the client? He had set the expectation that those
meetings were all they needed. This developer’s manager had to talk with
the client to request more meetings to answer their questions, which
delayed our project.

The developer learned that he needed to set the right expectations: There
will always be more questions.

The requirement definition cycle

The definition of system requirements is an iterative process, often
interleaved with the solution design itself.

There 1s no magic recipe to finding all the requirements for a new project.
However, here are a few heuristics you can use to guide your path:

1. Schedule one or two meetings with the following agenda:

o Find out what the problem your client is trying to solve.

o QGet a detailed picture of the business: Short, mid, and long-term
goals and budget constraints.

2. Request the help of one of your client’s domain experts.
3. Schedule multiple work sessions with the domain expert with the
following goals and actions:
o Learn how the existing process works today.

o Understand how your client is currently working around the
problem.

o Build prototypes and revise requirements.

4. With the help of the subject matter expert, iterate multiple times
between prototype design and requirements definition and
clarification.

Find out what is the problem your client is trying to solve

As we’ve discussed in this chapter many times, the first thing you need to
know is what problem you’re trying to fix. If this is a project you defined
yourself, you might already know the problem, and this step is mostly done.

However, new clients will have their own business cases, which is why they
request your services. Common use cases include:

e Building an application to automatize an existing process. The goal
here is to reduce costs by replacing existing manual processes that are
error-prone or time-consuming.

e Build a new application to add value to existing business processes.
The goal is to create new features whose goal, in turn, is to solve our
client’s problems; things as offering a new service or product online.

o Refactor an existing application. The goal is to replace (entirely or just
parts) a legacy application that is not operating as expected or it’s too
costly to maintain.

Your prospective client might not have a clear idea of what solution they
need (that 1s why they will pay you), but they will know the challenges they
are having. Understanding what led them to you in the first place is the first
step.

Get a detailed picture of the business

Once you know what ails your new client, the next step is to understand
who they are and their goals in the short, mid and long term.

Why do we need to understand what their long-term goal is? Can’t we just
focus on the application they want to build today? You can. It is possible to
limit your knowledge about your client to this specific problem and still
having a successful project.

But, by gaining deeper insight into your client’s business, you get two
things:

e A better vision of how the application could grow and future use
cases.

* The possibility of finding other areas where you can help your clients
means more business for you.

The former 1s especially important from a technical point of view: It lets
you better choose the tools that will not become roadblocks when future
requirements surface.

For instance, they might be using a specific billing service provider today,
but they plan to move to a different provider a few years later. This
knowledge will inform you that you must be careful not to tightly couple
the system implementation to the existing provider.

Tip: Search term: future-proofing

A term commonly used in software projects is “future-proofing”,
which means building features into your application that are not
needed today but might be used in the future.

Future-proofing is generally considered a bad practice, as it
introduces wasted effort and unnecessary complexity in your code
base by implementing features that might never be used. Dead code is
always tech debt.

However, building applications while understanding what the
requirements may be in the future is not future-proofing. We build
applications for today’s use cases using tools that will not create tech
debt for the possible use cases of tomorrow.

One thing about the business which is critical to understand is the limits
they have on the budget. It’s not the same as building an app for a billion-
user, multi-national company with millionaire budgets as building an app
for a local business with only a couple hundred users.

Budget constraints will give you much information about non-functional
requirements. If they have a limited budget, your client might be OK with
doing some trade-off between the number of servers you need and the
number of users they can have. Open-source tools may be preferred to
licensed products.

Your client may not know how to create a budget for this project; we can
guide them in creating one if we fully understand their goals, the functional
and non-functional requirements, and how to map them into infrastructure
and tools.

Request the help of one of your client’s domain-experts

Before you finish these first meetings with your new client, ask them to
assign a domain expert who understands the problem to fix. It can be the
person who is expected to use the new app or who works with the existing
process.

As you will be working closely with this domain expert, set the right
expectations: You need someone you can easily reach out to get answers to
your questions. Someone who can effectively train you in how this part of
the business works.

This part is essential, as you don’t want to make the same mistakes I did:
Wasting too much time on managers or directives in the initial exploration
phase. Or believing you have enough knowledge to be the domain expert
(99% of the time, you will not be the expert in that domain).

Learn how the existing process works today

The most effective way to collect requirements is to see how clients operate
today. With the help of your domain expert, start exploring the details of the
business operations. If possible, request permission to shadow them as they
do their daily work.

Domain experts are not necessarily specialized users. If you’re building an
exercise app, a domain expert can be someone who exercises often or a user

who would use it to get in shape.
As you watch your domain expert work, you will learn how the system
works today by asking the following questions:
e How is a regular day for the person who is expected to use the app?
* In which context are they expected to use it? In an office? In the gym?
e What does the expert like about the current process? What do they
dislike?

As you see the domain-expert work, notice if they do any “hacks” or
“tricks” to make their job easier. These might be hidden requirements
directly related to the main problem.

Remember a key fact: You cannot improve a process you know nothing
about. You will not become an expert working on this project but relying on
a domain expert will give you enough proficiency to find all the
requirements.

Build prototypes and revise requirements

As mentioned earlier, the requirements gathering is iterative. Once you
know how the new application should work, it’s time to work on the first
prototypes.

Tip: Search term: low-fidelity prototypes and high-fidelity
prototypes

Building prototypes is part of an exploratory phase in building
applications. It’s a task that usually lays in the hands of the team’s
designer or front-end engineers, but anyone can build effective
prototypes.

Low-fidelity prototypes are roughly built sketches that only highlight
the critical functionality. They don’t include details like color, fonts,
images, or even text, as these distract from the point you want to
discuss.

Low-fidelity prototypes are good tools to use at the beginning of a
project to explore ideas and find misunderstandings in requirements.

Low-fidelity prototypes are cheap, as they can be drawn in
whiteboards, sticky notes, or even napkins you may have lying around
while having coffee.

High-fidelity prototypes are complex and range from high-definition
sketches to fully working applications. They are better for later in the
project to validate assumptions about user interaction, visual design,
and text content.

High-fidelity prototypes can be expensive, as they require time from a
designer or a software developer to create. Use them sparsely.

By creating low-fidelity prototypes as you gather requirements, you can
confirm if your assumptions about the application are correct. Finding gaps
in your mental model early on will save you a lot of effort and money in the
long run.

In this step, you want to involve your front-end developers and your
designers, as they can collaborate in creating the prototype and get answers
to questions they might have on their own.

Don’t spend too much time or effort creating these prototypes, as they most
likely will change along the way. You only want to include the essential
things you need to drive the requirements conversation further.

Figure 1.1 shows an example of a low-fidelity prototype. The low-quality
shifts focus to the use case where a user selects an item from the menu and
clicks the order button:

Order

Cancel

__ O /

Figure 1.1: An example of a low fidelity prototype.

Review your prototypes with the domain expert. They will either validate
your assumptions or tell you what you got wrong. The advantage of low-
fidelity prototypes is they can be updated relatively quickly. Using this

feedback, iterate to see how the domain expert operates and find the correct
assumption.

As you get the agreement in the defined requirements, create a central
document to include all the project facts.

Use case: Defining requirements for the Pizza Place

After spending all day at The Pizza Place, we find they want a
straightforward operation for the first application version: Display a menu

to their users on their computers or smartphones and allow them to order
food.

They are just starting with this modernization effort, so they want the
cheapest option available to service their current client load of an average
of 100 orders per day. Before you leave, the manager tells you that if the
system works fine, they will want to expand it as they get more daily
orders.

This information about their goals and budget gives us a clear picture: The
Pizza Place don’t need a distributed system with clusters of servers foday,
but they are gaining clients quickly. It will not be long before the app needs
to scale, and we will account for that.

After working with the front-end developer and the cooks, you present a
collection of prototypes and requirements to the business owner.

She finds that some of your suggestions have features they don’t need in the
short-term (like allowing users to do too many customizations on their
pizza’s toppings). The Pizza Place only offers a simple menu of pizzas with
pre-selected high-quality toppings, so a customization module is extra work
they don’t need.

Thanks to working closely with the Pizza Place team for a few days, we can
define a document with all the requirements and assumptions. We use that
document as the source of truth and get sign-off from the client.

Having understood our new client’s needs, it’s time we see a menu of all the
different tools we have to satisfy these requirements.

The modern system design: a ten thousand-feet
view

Since we now know that finding solutions to our users’ problems takes
priority over choosing a tech stack, let’s look at the variety of tools
currently available for software developers at each layer of the application
development process.

The following is a high-level view of the most common elements used in
building modern applications:

Jenkiny
Dankiog: Beviliars Toment ambry Fil 47008
9 WS Claulroat —— s 53 o T
Adure C

Figure 1.2: Sample system architecture

Overwhelming, isn’t it? We have multiple layers like a front or a back-end,
each of which has numerous services like data storage, business logic, and
infrastructure management; each has different providers and
implementations, with their pros and cons.

Getting the front-end out of the way

Notice that we are not making a hard distinction in the picture between a
front-end and the back-end. This soft limit has two reasons:

First, this is a general view of the whole system, end-to-end.

Second, in modern development, the division line between the
responsibilities of front-end and back-end developers has become blurry,

especially in startups where both budgets and teams are small and where
most software engineers end up doing work all over the stack.

It’s common for front-end developers to work in the API or for back-end
developers to update client code to enable the features they need.

This merge in responsibilities has become so ubiquitous that it led to the
emergence of the elusive title of “full-stack developer”, which is nothing
else than a software engineer with experience in technology from both ends
of the stack.

Let’s focus on the front-end for a second. We can see that this sample
architecture supports a diverse set of clients:

e Web clients (browsers like Chrome, Firefox, etc.)

e Native mobile applications (Android, 10S)

e Internet of Things (IoT) devices with built-in technology like
Raspberry Pi or Arduino boards.

o “Smart’ devices like Amazon Alexa or Google Assistant

e Native desktop clients
Historically, before the general use of smart devices like phones and tablets,
traditional web applications had a strong coupling with back-end services.
Dynamic web applications would rely on the same back-end server to do
multiple things:

e Fetch data from the database

e Execute business logic

e Transform and format data into HTML

e Return the dynamically generated HTML to the browser
However, the need to reuse business logic became critical as a wide range

of modern gained popularity. The execution flow of web applications was
split in two:

e An API to publish business-specific logic (which also includes
fetching data and data transformation)

e A Web server to render the front-end, which calls the business API, if
needed

e Mobile apps that make calls to the same API as the web application

This separation of concerns helped decouple the front and back-end
development: As long as a contract is fully established at the API level, the
back-end and the front-end can be developed in parallel. We’ll go more in-
depth on these design concerns in the chapter about (Chapter 4, Designing
APIs).

With this clean separation between the front and back end, let’s take out the
front end of the picture, and simplify it a little, so we can focus on all the
areas we will discuss in this book.

[- Bpring Bost
- Rt . Brtag Wi
] prass
AWE Cagnite] Djangs
i — —
Segtror o Sarvice Tmt
ik sueach L o -
- 1 Splenk e]
1 — Frewad | iogom AW Dyaama el

:.qﬁ .»"“‘"\

Figure 1.3: Sample system architecture

Don’t worry if you feel a bit lost. You are not expected to know each part of
this diagram, nor should you memorize it. This is just a preview of all the
topics we will discuss in this book.

Each component displayed in Eigure 1.3 is a different kind of tool in our
belt. They all accomplish different goals, but only a subset of them are
required for the average app. For instance, you might not need a file storage
service if you’re not dealing with binary files in your application.

Building blocks

Web servers are in charge of receiving HTTP requests from either the
clients directly or from an external API layer. It could be just one server if
there is not much traffic, or it can be a set of multiple servers behind a Load
Balancer. We will see more details in Chapter 2, The Client-Server
Architecture.

The API layer receives requests from clients or other applications. This can
be a logical (services running on the web server) or semi-physical
(independent services running in their own servers) layer which takes care
of tasks like authorizing client requests using an authorization service. The
API layer can even limit requests or charge users for using it. We will see
more details in Chapter 4, Designing APIs.

For distributed systems, it’s common to use a queue. It allows
asynchronous communication between services. Queues provide resiliency
to the system in case individual services are down. We will get more
information about it in Chapter 11, Creating High-Performance Apps.

Logging services provide storage of operation information. Errors,
warnings, or event metrics are stored here for later analysis. Logging is one
topic that will discuss in Chapter 8, Handling Errors.

The application can be split into one or many business services. These can
also be logical or semi-physical. The whole second part of this book is
dedicated to how to build these services.

Database services provide a place to persist our application’s data. Services
like file storage are specialized types of data storage. Chapter 5,_End-to-
end data management, goes in-depth about how we store and manage data.

Continuous Integration and Continuous Delivery (CI/CD) is a
methodology focused on building the infrastructure required to compile and
deploy our application. In Chapter 10, Deploying Applications, we discuss
how to leverage concepts like version control, Virtual Machines (VMs), or
containers to deploy our application as we make changes to it.

There are many other building blocks we do not include here. This omission
is not due to these components being less critical but because it would blow
up the scope of this book.

Also, notice that we’re not referring to multiple of these blocks by specific
technologies (e.g., we’re using “data storage” instead of MySQL,
MongoDB, etc.). By keeping these concepts at the right level of abstraction,

we will see common patterns those specific implementations share,
allowing us to master them all with relative ease.

Understanding the listed components will give you enough knowledge to be
a proficient back-end developer.

In the following chapters, we will dissect each component in these diagrams
along with good practices to use them to create quality applications.

Conclusion

Most of the apps we will build in our careers are tools to fix problems for
people. If the app doesn’t provide the right solution, users will abandon it.

Having this problem-solving-led vision as a back-end developer will give
you an advantage over other developers: It will guide all your technical
decisions, making you a more efficient and successful developer; more
clients will want to use the code you build, and more companies will want
you to be part of their teams because your code gets things done.

Finding problems to solve is not a simple task, but if you are proactive
enough and ask the right questions, you will find things to work on that
make a difference. Providing the right solutions to simple problems is the
path to success for the biggest technology companies.

By following an iterative process, guided by your client’s domain expert’s
feedback, you will be able to identify all the system requirements needed to
choose the right components for your application.

Modern applications have an ecosystem of components and tools constantly
evolving. More than learning the specifications of each tool, we should
focus on learning design patterns that abstract the benefits of the whole
toolset.

In the following chapter, we will dive deeply into the most ubiquitous type
of application we will build as back-end developers: Web applications.

Questions

e From all the apps installed on your phone, pick one that makes your
life easier AND only solves one or two problems. Why does a solution
so specific cause an impact on you?

e Have you ever downloaded an application that you immediately
uninstalled because it didn’t provide any value for you? If so, what
was it missing?

e Think of three companies or startups you think are successful. What

problems did they solve when they first started? Did they focus on one
area, or did they solve more than one problem?

CHAPTER 2

The Client-Server Architecture

In order to become a proficient backend developer, we need to clearly
delimit what our responsibilities are. These responsibilities are strongly
defined by the architecture patterns we use while building our application.

The most prominent architecture pattern we use in backend development is
the client-server architecture. There are virtually no applications currently
being built which don’t rely on this pattern, at least in part.

This i1s a lesson so basic that many books assume you know everything
about 1it. It’s common that this assumption can easily lead to
misunderstandings on how web applications work; the most common one is
to think that HTTP and client-server is a 1:1 mapping. We’ll find that client-
server is much wider than HTTP.

In this chapter, we will discuss how the client-server architecture is
implemented in modern web-based applications, at more than one level of
abstraction.

This is not a detailed description of a specific protocol (like HTTP), even if
we include details about it. We’ll only include enough information for you
to have a strong understanding on how things work.

Structure

In this chapter, we will learn the following topics:

e Architecture details

o Abstraction layer: Frontend client and backend client
o Abstraction layer: Data access service client, database server

e HTTP: The language of the web

e Implementing a web server

o The main process

o Serving a response
o Multi-user support with multi-threading

e Using a production-ready server
o Enabling HTTPS in Express

e Layered architecture: Fully splitting the client from the server
o Splitting clients

e Client versus server computing

e Web servers as stateless services
o Storing session data

o Use Case: Applying a client-server architecture to the Pizza Place app
e Client server versus peer-to-peer

Objectives

By the end of this chapter, you will have a strong understanding of how
client-server technologies work under the hood and how we can leverage
that knowledge to become a better backend developer.

You will also learn about some of the critical configurations in a web
server: Response compression and communication encryption through
HTTPS.

Architecture details

Having enough computing and storage power to accomplish tasks which
today we consider simple was prohibitively expensive a couple of decades
ago. Mostly large institutions like universities or governments owned
operational computers with high-computing resources (or at least enough
resources to provide value to their users).

Historically, the first examples of client-server architectures are based on
the need of accessing high-capacity servers remotely. ‘Dumb’ terminals
were created to allow the operation of these computers without having to be
physically present in the same room as them. These were the first clients,

and they communicated with their servers through direct connections or
private networks.

As technology advanced, clients became less ‘dumb’. Now, modern clients
have more computing power and storage capacity than most
supercomputers from the past few decades. However, the client-server
architecture is going nowhere.

Simply defined, servers are high-storage-capacity and high-computing-
power equipment that store and process most of the data related to specific
functional goals.

A client 1s a smaller device -with less computing resources- which is used
to access the server resources. One server can receive requests from N
clients, as shown in the following figure:

Gk

Clifm
1_ ﬁl i - q-l
L—IL—L
Client J"Suer\.urs.'rd'k Client

& &

Client Client

Figure 2.1: Simple client-server architecture. Multiple clients connect to a single server

As seen in the previous chapter, we can create clusters with multiple
servers, each with different functions. Even if we have multiple servers, the
definition of ‘client-server’ still holds. You can think of the whole
interaction between clients and servers as a single, abstract, large scale,
computing device. All the parts get together to become a single “server”
unit.

A common misunderstanding is to believe that the client-server only applies

to the web interface, when in reality the client-server is used as a pattern in
multiple areas of application development.

The following are a couple of examples of areas which actively implement
the client-server architecture:

e FTTP (for file storage)
o Client: A program that allows users to upload, download or

modify files hosted in a remote server.
o Server: The server that stores the files.

e Data access service client, database server

o Client: Data processing service, with database adapters like
Open Database Connectivity (ODBC) or Java Database
Connectivity (JDBC)

o Server: Database server

Multiple instances of the client-server architecture can be part of a single,
larger application.

Abstraction layer: Frontend client and backend
client

The most common instance of the client-server architecture is the web
application. The client role is assigned to the user interfaces (web apps,
mobile applications, [oT devices, and so on) and the server role is given to
all the services to which the user interfaces make requests to, all grouped in
a single layer of abstraction: The backend.

It’s important to notice that the role of the client can be given to user
interfaces, but not all clients need to involve direct user interaction. There
are clients which in turn are used by other servers (like database clients) to
make requests to other servers. Thinking about the user interface and client
as the same terms is a very common mistake.

Abstraction layer: Data access service client,

database server

Relational Database Management System (RDBMS) implementations
like SQL are based in a client-server architecture: A centralized data storage

server which is accessed by lightweight clients.

This model of data storage concentrates all the information in a central
service that has the role of a server. Then, multiple clients can send ‘read’
and ‘write’ requests to our database server.

Besides the obvious performance gains provided by having a server (or
cluster of servers) dedicated entirely to store data, we also get some
consistency guarantees if we assume that the database is the source of truth
for the application.

Things get a bit complex when some databases implement architectures
distinct from the client server. For instance, databases like Cassandra have
an internal peer-to-peer node distribution in their clusters. It might seem
like the client-server architecture does not apply to these kinds of databases;
but from the point of view of external users and services, the cluster of peer
nodes is still a server by itself.

The main takeaway here is that the concepts client and server are abstract:
They can have multiple instances each and still be considered a single
“client” or a single “server”.

HTTP: The language of the web

We have discussed the client-server architecture from an abstract point of
view. Now, let’s discuss the most common example of this architecture:
HTTP.

Hypertext Transfer Protocol (HTTP) enables all the communication
between client applications (both desktop and mobile-based) and the web
servers. Web Service technologies like REST and SOAP rely internally on
HTTP.

In Figure 2.2, we can see the activity diagram for the communication
between a client requesting a web page index.html and then doing a form
submission through a POST request:

Client Server

User requests web page
*— GET index.htmi

| 200 OK (w/HTML for index.html)

The client makes a

form request to create
a new order A record with the
order is stored

POST send-order.htmi

201 Created

Figure 2.2: Example of an interaction between a web client and a web server using HTTP

HTTP is so basic in web development that there are chances that you may
already know all the basics. But, at the same time HTTP is composed of so
many abstract concepts that it can be difficult to relate it to real-world cases
if you don’t have enough experience.

When I started my career in backend development, there was a big gap in
my understanding of how web servers extended from more basic, Hello-
World-like applications. The code we build in languages like C++ or Java
while in school or early on in my career followed a procedural approach.
The code you build for web applications, though, uses an event-driven
programming paradigm.

How does a procedural-based application become an event-driven web
application?

Tip Search terms: procedural programming and event-driven
programming

These two are very different approaches of building code. In
procedural programming, developers describe the behavior of the
program one line at a time, one step at a time, end to end.

In event-driven programming, developers create the code to react to
certain events: A user clicks on a button, a file is downloaded, a
network response is received, etc.

The glue which is in charge of translating the code between both types of
programming paradigms is hidden within the implementation of the web
server. This glue looks like magic for inexperienced developers.

If you have experience in web development, you might fully understand
how procedural applications work, or how event-driven applications work.
But chances are you haven’t seen the code that allows both to interoperate.
Because of this, in this chapter, we will build a very simple web server.

Building a server has two goals: First is to look at the internals of HTTP as
a protocol; which is more helpful than just reciting the HTTP spec. Second,
it demystifies the inner workings of web servers; which are nothing else
than regular applications which are also compiled and executed (and
procedural in their execution). There is nothing really magical inside them.

Implementing a web server

Web servers are complex pieces of software. They deal with requests from
multiple users, reading data from sockets and ports, formatting HTTP
requests and responses, and so on.

Many developers spend years in their careers not fully understanding how
web servers work internally. Chances are you will never have to build your
own web server for a production-ready application; and you don’t really
want to.

Between building your own custom web server and using one that is
commercially available, you should always choose the existing server.
There are just too many things to consider to make sure a server is
production-ready, so it’s better to rely on products which have been widely
tested before.

Having said that, we will implement a web server just to build a stronger
mental model. As soon as you see that the basic operation of a web server is

actually really simple, you will feel more confident of your knowledge
about building backend code for web applications.

Note: About mental models

Exercises which might seem a bit unnecessary at first (like building
your own web server when you will almost never want to use it in a
production app) are useful for building a strong mental model.

A mental model is our understanding of how something works.
Mental models do not only apply to software, as you can have a
mental model of how a car works, how your coffee maker works, or
how a bureaucratic process works.

When your mental model about a thing is extremely detailed, you can
easily diagnose when something wrong happens within the thing itself.
You can understand its strengths and weaknesses, and design
improvements.

If you want to become an expert in any field, strive for building a
strong mental model of the inner workings of what you want to study.
You should be almost capable of imagining each part in detail such as
a map or schematic.

We will first build a single-threaded version of the server. Then, with a
couple of simple steps, we will extend the example to use a thread pool to
allow multiple concurrent requests.

We’ll use Java for this example, importing only base libraries. No
frameworks or external products. If you’re not familiar with Java, rest
assured that there is not a lot of Java-specific code and almost every
language has network libraries that will allow you to do this.

The main process

From a simplified, high-level view, a web server is an infinite loop which
constantly reads a server’s socket. For example, we expose the socket at
localhost or 127.0.0.1, and a specific TPC port which is not currently used
by the server, in this case, port 8080.

Note: Anatomy of a server: TCP/IP, ports, and sockets

TCP/IP is a network protocol used to interchange information. It’s
used by HTTP to direct requests and responses to and from a web
server.

Web servers can be identified by their IP address (and the domain
name which resolves through DNS to that IP, e.g., google.com).
Multiple services can be exposed in the same server, each using a
specific port. The combination of an IP address and a port is known
as a socket.

Ports are numbered and the first 1024 are assigned to well-known
services. For instance, HTTP is commonly routed through port 80 and
HTTPS through port 443.

Ports above 1024 are not pre-assigned and can be used by your
application for exposing custom services. For instance, during
development, a common port used for HTTP is 8080, but it can easily
be exposed using any other port like 8081, 8082, etc.

Localhost

When a service starts running in a server, it’s usually accessed by its
public IP address and a specific port.

However, you can call a service from within the same server it’s
running on by using the “loopback” IP address instead of its public
address. The loopback address in a server is always 127.0.0.1, and the
DNS alias is ‘localhost’.

So, if you’re inside a production server running a web application like
example.com, you can make a request to localhost:80 and you should
see the exact same web page.

As long as the main process keeps looping, the server will be up. Let’s take
a look at the main process:

import java.io.*;

import java.net.ServerSocket;

import java.net.Socket;

BN -

.public class {

. final private static int PORT = 8080;

.public static void main(String[] args) throws Exception {

S © %N W

1 try (ServerSocket serverSocket = new ServerSocket (PORT))
{

1. while (true) ({

12. try {

13. Socket client = serverSocket.accept();

14. handleClient (client) ;

15. }

16. catch (Exception err) {

17. err.printStackTrace () ;

18. }

19. }

20.

21.

22.)

In each iteration, the main process will check the socket to see whether a
request has been made. Once the client makes a request,
serverSocket.accept () Will return an instance of a socket client which
will contain the stream of data for a user request.

It’s important to mention that serverSocket.accept() is a blocking
operation. The execution will reach that line of code and it will pause until
it receives an incoming request. Once the request is received and processed,
a new loop will happen and (unless there is an error) the server will pause
again at serverSocket.accept () in the next iteration.

Once a request is received, the handleclient function will be called:

l.private static wvoid handleClient (Socket client) throws

IOException {

. BufferedReader br = new BufferedReader (
new InputStreamReader (client.getInputStream())

) ;

. List<String> requestslines = new ArrayList<>();

O 0 N AW

IO.String line;

11.

12.

13. do ¢

14. 1line = br.readLine();
15. requestsLines.add(line);

16.} while(!line.isBlank());
17.
18.
19.
20. }
The socket client has a getInputStream method, which returns the contents

of the request. This is a stream of bytes, but since we know this is an HTTP
request, we can interpret those bytes as text.

We can read the socket’s input stream using a BufferedReader. The reader
has methods that allow us to convert the input stream into an iterator which
in turn reads the request one line at the time.

We iterate through the lines of text in the request until we find a blank line
which marks the end of the request.

Note: BufferedReader has methods that return a Java Stream instead
of an iterator. While this can be useful in certain cases, keep in mind

that the input stream will not close itself. It will stay connected until
the client navigates away, closes the browser, or times out the request.

In those cases, the BufferedReader stream methods will hang until the
client closes the connection, even if a blank line is returned in the
response’s stream.

The Java Stream API was introduced in Java 8, and if you’re a Java
developer and you want to learn more about it, you can check the
‘Java Stream APD’ link in the documentation section for more details.

At this point, you can add a debugger breakpoint inside handleClient, run
the program, open a browser window, and navigate to
http://localhost:8080/index.html.

Once the execution reaches the break-point, you can see the HTTP request
in the list of strings we gathered from the input stream:

GET /index.html HTTP/1.1

Host: localhost:8080

Connection: keep-alive

Cache-Control: max—-age=0

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10 15 7)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131
Safari/537.36

You might see some slightly different values or extra headers not included
in this example, which define things like caching, authentication, session
management, etc. These might be dependent of your local environment, like
the type of browser you used to make the request.

The first line in the request follows a specific format where we indicate the
verb or action to perform, the request target or resource to apply that action
to, and the HTTP version.

There are 9 different types of verbs which can be used; the most common
ones being GET and POST. Different combinations of a verb with the same
resource can indicate distinct types of operations.

A POST or PUT request would look like the GET request we just saw, with
the addition that the request can include a body below all the headers. This
body can be binary data, XML, JSON, etc.

We will visit these verbs in more detail and see how to use them in Chapter
3, Designing APIs.

Serving a response

Having received and parsed a request from the client, it’s time to do
something with it. Keep in mind that, from the moment the server receives
the client’s request, the client will wait for a response; so we better act as
fast as we can.

We will support the following two different operations:

e Return a static HTML file: This emulates the behavior of servers
like Apache or nginx that return static files to the client when
requested. Other static files to serve could be JavaScript, CSS, image,
or video files.

e Return a dynamically-generated HTML response: This is a
common way in which web application technologies like Java Servlets
or PHP work. They build the response in run-time based on the
information given in the request.

In order to support these two cases in our example, we need a condition to
indicate the server when to execute each. Just for the sake of this example if
the client requests /dynamic.html, we will return a dynamically-build
response. For any other resources, we will try to fetch the requested static
file (e.g. index.html). If the file doesn’t exist, we return a 404 Not Found
eITOr

1. final private static String DATE FORMAT NOW =
2. final private static String DYNAMIC = ;

3. final private static byte[] NOT FOUND HTML =
.getBytes () ;

N ok

8.String[] requestlLine = requestsLines.get (0) .split(

9. String path = requestLine[l];
10.

11.

12

15

23.

. Path filePath = Paths.get(, path);
13.

14.

. 1f (DYNAMIC.equals (path)) {
16.
17.
18.
19.
20.
21.
22.

24.
25.
26.
217.
28.
29.
30.} else {
31.
32.
33.
34.

35.
36.

}
}

37.

sendResponse (client, ,
’

getDynamicResponse ()

) ;

}

else 1if (Files.exists(filePath)) {

sendResponse (client, ’
Files.probeContentType (filePath),

Files.readAllBytes (filePath)

) ;

sendResponse (client, ,

’

NOT FOUND HTML
) ;

) ;

38.
39.
40.

41.
42.

43.
44.
45.
46.
47.

48.
49.
50.
51.
52.

53.
54.
55.
56.
57.
58.

private static byte[] getDynamicResponse () {
Calendar cal = Calendar.getInstance();
SimpleDateFormat sdf = new
SimpleDateFormat (DATE FORMAT NOW) ;
String response = String.format (

14
sdf.format (cal.getTime())) ;
return response.getBytes();
}
private static wvoid sendResponse (Socket client, String
status, String contentType, bytel] content) throws
IOException {
String LINE BREAK = ;
OutputStream output = client.getOutputStream();
output.write ((+ status) .getBytes());
output.write ((+ contentType +

LINE BREAK) .getBytes());
output.write (LINE BREAK.getBytes());

output.write (content) ;

output.write ((LINE BREAK + LINE BREAK) .getBytes());
output.flush();

client.close();

}

Inside handleclient, we check the resource to fetch. We rely on the
VERB-RESOURCE-HTTP_VERSION structure we mentioned earlier to
extract the resource name. If the requested resource is “/dynamic.html”,
we will dynamically generate HTML to display the current time and date:

l.

String response = String.format (

2. “<hl>Dynamic response</hl> Today is $s”,
sdf.format (cal.getTime())) ;

This might be a very simple example of dynamically generated HTML, but
in practice, you will probably fetch data from a database, convert it to a
format which can be understood by your users, and then convert it into
HTML.

For the static file route, we will create a file with the name index.html, and
put it in the same folder where our server is going to run:

l. <body>

2. <hl>Static Response</hl>

3. This is index.html

4. </body>
The sendresponse function takes care of formatting the response headers
and rendering the content into the socket’s output stream. The stream reads
arrays of bytes, so we convert the text we want to return in our response to

bytes (using the conveniently-included method getBytes, part of the
String class).

Having created the two resources, we can access them through a browser.

Open a new browser window and request
http://localhost:8080/index.html to fetch the static response. The
browser should display a text message as displayed in Figure 2.3:

C (O localhost:8080/index.htm|

Static Response

This 1s index.html

Figure 2.3: localhost:8080/index. html

In a similar way, we can access the resource that dynamically generates
HTML by opening another browser window and navigating to
http://localhost:8080/dynamic.html. You will see the same text as
shown in Figure 2.4:

< C (@ localhost:8080/dynamic.html

Dynamic response

Today is 2021-08-16 21:25:22

Figure 2.4: localhost:8080/dynamic.html

You can print the response directly in the server, or you can use your
browser’s developer tools to see it:

HTTP/1.1 200 OK

Access-Control-Allow-Origin: *

Connection: Keep-Alive

Content-Encoding: gzip

Content-type: text/html; charset=utf-8

<html>

The format for the HTTP response is as follows: The HTTP version, then
the status code, and then a status text. The actual content of the response (in
this case, the HTML for index.html Or dynamic.html) is returned below
the response headers.

Notice how the stream of bytes the server returns can be parsed back to a
string. There is no magic here: We converted text to bytes in the server, and
we can parse them back to text again.

You can keep using your browser to test our server endpoints, but many
developers like to use curl. You can request both the resources by running
the following commands in terminal/bash:

curl localhost:8080/index.html

curl localhost:8080/dynamic.html

Each of these commands makes an HTTP request (using GET by default) to
the given URLs.

Note: About curl

The Bash command ‘curl’ is an open-source command line tool for
transferring data with URLs. Developers use it commonly to make
requests to remote servers.

If you’re using a Unix-based computer like Linux or MacOS, "curl’ is
already installed in your system. If you’re running Windows, there
are multiple sources from where you can install curl:

- Git bash, which is included in Git for Windows
- Package managers like Chocolatey, MSYS2, Scoop, Cygwin

Multi-user support with multi-threading

Since our server is running using a single thread, if one of those requests
were to take a long time to fulfill (for example, doing a long database
query), the next request will have to wait in line for the first to complete
before continuing.

Looking at our code, this means that the execution inside our main function
will pause at two points: On serverSocket.accept () While it waits for a
new request to be made, and on handleclient while it waits for that
function to complete.

Visualizing asynchronous execution can be difficult, but we can directly see
how this problem works by adding an artificial delay to our code of 10
seconds and printing the current time in seconds right after the delay
finishes:

l.private static wvoid handleClient (Socket client) throws

Exception {

2.Thread.sleep(lOOOO);
3.
4.System.out.println(+

5. Instant.now () .getEpochSecond()) ;

6.

After adding that code to handleClient, call
http://localhost:8080/index.html two times in a row (it can be in two
different browser windows, or two parallel ‘curl’ calls). If you’re using tow
browser windows, try to make both requests as fast as you can.

Take a look at the text messages we’re printing in the server’s console.
Notice how each request is exactly 10 seconds from each other.

curl localhost:8080/index.html & curl

localhost:8080/index.html

Current time in seconds: 1629241268

Current time in seconds: 1629241278

Requests will stand in a queue waiting for the previous one to finish,
regardless of how fast one is executed after the other.

As you can probably tell, this is obviously a bad situation. We want users to
be able to make requests to our server concurrently. Imagine if this is how
sites with millions of users like Facebook or Google operated, where each
server can only serve one user at the time.

For enabling support for multiple concurrent users, we can extend our
server to use more than one thread.

Adding multi-threading to our server is straightforward. To execute the
code in a separate thread in Java, we need to create a new class which
extends the Runnable interface and implement the public void run()
method.

We will move all the code which currently sits in handleClient into
public void run(). Since we cannot pass parameters to run, we will pass
Socket client in the constructor for the new class, as follows:

1. class ServerHandler implements Runnable {

2.

3. private Socket client;

4.

5.public ServerHandler (Socket client) {
6. this.client = client;

7.}

8.

9. public void run() {

10.

Then, on our infinite loop, every time we receive a new request, we call
ServerHandler as a separate thread:

1. public class HttpServerMultiThread {

2

3. static ThreadPoolExecutor executorService =

4 (ThreadPoolExecutor) Executors.newCachedThreadPool () ;
5.

6. final private static int PORT = 8080;

7

8.public static void main(String[] args) throws Exception ({
9 try (ServerSocket serverSocket = new ServerSocket (PORT))

{

10. while (true) {

11. try |
12. Socket client = serverSocket.accept();
13.
14. executorService.submit (new ServerHandler (client));
15. }
16. catch (Exception err) {
17. err.printStackTrace () ;
18. }

19. }

20.
21.
22,1

Creating new threads consume memory and resources, so we don’t want to
generate an infinite number of threads. We use a thread pool
(ThreadPoolExecutor) so Java can reuse threads instead of always creating
new ones for each request.

If we don’t want to use a thread pool for this example, we can always create
the threads manually as follows:

1. new Thread (new ServerHandler (client)) .start ()

This means that our main function now will only pause in
serverSocket.accept(); once the execution reaches the new
ServerHandler (client) class, the main thread will not stop and wait for
the request to be processed and the response to be served. The execution
will 1mmediately move back to wait for new requests in
serverSocket.accept().

Now, re-run your server and repeat the experiment where we called
/index.html two times at simultaneously. Notice that now the difference is
less than 10 seconds. In this example case, the difference is ~2 seconds,
which is the time it took to manually fire the second request after the first,
using a browser:

Current time in seconds: 1629242176

Current time in seconds: 1629242178

If you use curl to execute both the requests in parallel, you will notice that
both the values will be equal, which means the difference between requests
is less than a second, even with the 10 second-delay in the code.

All the code required to serve a client’s request is being done in a separate
thread than the one which is waiting for connections and running the server
itself.

This new multi-threading server is a lot more similar to production-ready
servers. It can handle requests from multiple users without blocking each
other. Yet, we still wouldn’t want to use it for a real application because
then you would have to manually implement features like encryption
(HTTPS/TLS/SSL) or response compression (gzip). While implementing

these features yourself is possible, you will need to dedicate extra resources
to make sure they follow the standards correctly and they are bug-free.

Tip Search term: gzip

Modern web servers use gzip by compressing the responses they
return. As seen, HI'TP responses can be long strings of text, with
multiple white spaces or repeated words (think of HTML elements
like <body>, you will have at least two strings with the value “body”
for opening and closing tags). Taking advantage of this repeated
information, we can apply encryption to remove repeated data and
reduce the size of requests and responses.

Encryption services like gzip compress the responses so they can be
transmitted faster to the client. The client then de-compresses the
response and parses it.

Servers like Apache provide compression services out of the box. In
the case of Apache, you can enable mod_gzip in the configuration file.

Using a production-ready server

Now, let’s take a look at an actual server you can use to build production-
ready applications. Instead of sticking to Java, let’s take a look at the
NodelS Express server.

Note: Traditionally, Java web applications have been deployed by
packaging them in WAR files, which then are deployed to
independent web servers like Tomcat or Glassfish.

From the past few years, Java web applications started to be built
with embedded servers like Jetty using frameworks like Spring Boot
or Play. Many applications (especially Docker-based ones) strive for
applications with embedded servers.

Both deployment technologies are valid; each with its own set of
complexities.

Express is a popular framework used to build web applications in Node.js.
Express works as an embedded server, which means that you don’t need to

start a separate server to execute your application, instead, it all runs in a
single process -similarly to our custom-made example web server-.

Assuming you have installed Node.js in your computer, create a new Node
project and install Express with the following commands:

1.
2.

npm init

npm install --save express

Then, create a new index. js file with the following JavaScript code:

e e T W U S
N N

17.

N = R O

const express = require ()
. const app = express();
const port = 8080;
app.use (, express.static()) ;
app.get (, (req, res) => {
res.send () ;
1)
. app.post (, function (req, res) {
res.send () ;
- b
.app.listen(port, () => {
console.log(${port});
}) g

This small application is doing a few things:

Creating an instance of an Express server, and keeping a reference to it
in the variable app

Creating a mapping for static files hosted in the folder/static
Creating a mapping for both GET and POST requests for the route /

Starting the server in the port 8080 and showing a success message
once the server completes initialization

Notice that this piece of JavaScript code is very similar to the code for our
custom made server in Java. However, notice some important differences:

Express follows a fully event-driven programming approach: We
define ‘callback’ functions to execute on different events like getting a
GET/POST request, or when the server starts. As mentioned earlier,
the procedural part of the server is hidden inside the server’s
implementation.

We don’t have to manually parse the input stream for the request.
Express takes care of doing the parsing for us, and passes the resulting
object to our handlers (in the function’s first parameter).

We don’t have to convert strings to bytes in order to return them in the
response. Again, Express takes care of that with res.send().

For rendering static files like index.html, we don’t need to manually
read each file from the server. app.use(‘/static’,
express.static(‘public’)) takes care of linking a specific sub-
route to a folder in the server, mapping URL paths to file names.

We can see one of the advantages right out of the box when we try to enable
the response compression in Express:

1.
2.
3.

4,

var compression = require () ;
var express = require ()
var app = express|();

app.use (compression());

If we wanted to enable compression in our own custom server, we would
have to implement it ourselves: check the request headers and see whether
the compression should be enabled in the response, in addition to actually
compress the response using something like gzip before returning it back to
the client.

Enabling HTTPS in Express

HTTP requests and responses are nothing else than text being sent back and
forth through the network between the client and the server. Sensitive
information like authentication tokens, session tokens, or any information
within the requests themselves will be sent in plain text.

Anyone connected to a network can use a packet sniffer (a tool to read all
traffic in the network) and read the request and responses of the clients
connected in the same network.

HTTPS provides an encrypted channel so clients and servers can
communicate securely. All traffic is encrypted; and while the encryption
itself is not enough to keep malicious users from accessing sensitive data,
it’s definitely better to use HTTPS than HTTP. Besides, most of the search
engines like Google will penalize your site if it’s still running in HTTP.

We can definitely add code to our custom server to enable HTTPS.
However, the list of the requirements that a server needs to comply with in
order to fully support HTTPS is long, and would take longer than we can fit
in this chapter. If you’re interested in looking at these requirements, take a
look to the “RFC 7230 - Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing”.

The advantage of using a production-ready server is that someone else
already took care of implementing the list of requirements for HTTPS, so
all we need to do is to provide an SSL certificate that will be used to sign all
encrypted requests.

SSL certificates provide information to clients about the authenticity of the
server. It provides identity information that is validated by a Certificate
Authority (CA).

There are a couple of ways to get an SSL certificate:

e Create a self-signed certificate using OpenSSL.

e Buy a SSL certificate for your domain using one of the many hosting
providers out there.

e Get a free SSL certificate for your domain using letsencrypt.org.
If you buy your certificate or use LetsEncrypt, your vendor would provide

you with the steps to get the required certificate and key files for your
application.

Note: LetsEncrypt versus paid certificates

Paid certificates typically provide more levels of validation (supported
by a Certificate Authority) than LetsEncrypt, and they can give a
better sense of protection to your clients and better placement in
search engines.

LetsEncrypt is built so that the small projects can protect their data
for free; hence, it’s great for websites without a lot of sensitive data
like blogs or personal sites.

If you plan to get a certificate for your business, consider buying one.

Self-signed certificates are useful for development environments. They are
not great for production deployments, though, as the client will get
warnings about self-signed certificates not being enough to validate the
server’s identity.

If you have OpenSSL installed, you can generate a self-signed certificate
with the following command:

openssl req -nodes -new -x509 -keyout server.key -out
server.cert

Once you have a valid certificate and keys, the following code will enable
HTTPS in your Express application:

. var express = () ;

.var fs = () ;

. var https = () ;

. var app = express|();

app.get (, function (req, res) {
res.send () ;

1)

O 0N AW N

—
S

. https

p—
N —

.CreateServer (

{

13. key: fs.readFileSync (),

14. cert: fs.readFileSync (),
15. by

16. app

17.)

18. .listen(3000, function () {

19. console.log(

20.

21.) ;

22, 1)

Notice that the code for the HTTPS-enabled server is only slightly different
from the HTTP server. Express is taking care of all the details for
encrypting requests and responses.

Web application servers encapsulate all the boilerplate logic required to
handle HTTP requests and responses. As we can see with the Express
server, they provide a place for you to put your own code. This abstraction
allows you to concentrate on building business logic instead of having to
take care of implementing HTTPS for every project.

Layered architecture: Fully splitting the client
from the server

Traditional web servers had the responsibility of storing/processing data,
and rendering the application’s HTML. This was the only approach
available to build dynamic web applications with a technology like PHP.

The following PHP script queries a list of products from a database and
renders an HTML with a table containing the results:

1.<?php

2. $servername =

3. Suser = ;

4. $pass

5. $dbname = ;

6.

7.

8. Sconn = new mysqgli ($servername, Suser, S$pass, Sdbname);
9.

10. squery =

11.$query_result = S$conn->query ($query) ;
12.

13.if (Squery result->num rows > 0) {

14. echo
15. echo
16. echo
17.
18. while (Srow = Squery result->fetch assoc()) {
19. echo Srow]| 1.
.Srow| 1.
.Srow ([1. ;
20. }
21. echo ;
22.} else {
23. echo ;
24.
25. $conn->close () ;
26. 2>

The following is a step-by-step explanation of what this script is doing:

e Make a request to a MySQL database to retrieve the list of names
from the table MyGuests.

e Retrieve the list of results from the query.

o If the list of results is empty, display a 0 results message. Else,
dynamically create an HTML table with the results and render it.

e Return the generated HTML.

This approach is a bit different from the ones we’ve seen in our custom web
server and in the Express server. PHP follows a fully procedural approach.

If you need to hire a developer to maintain an application which is built
with a bunch of scripts like the PHP one we just saw, what kind of
developer would you hire? A frontend developer? A backend developer?
The coupling between front and backend in that application would make it
really difficult for teams of front and backend developers to collaborate
successfully.

There is a strong coupling in this script between the presentation layer and
the business layer. Of course, a production-ready application wouldn’t use a
single script, but even if you split it into multiple files, nothing enforces a
clear separation of concerns.

Tip Search term: Separation of concerns

This design pattern is closely related to the Single Responsibility
Principle in Object Oriented programming.

The idea is that each unit of code should only have a defined goal or
responsibility. Code with similar goals would be put in the same place.

Separating your code by the concern they address simplifies your
project. Finding the correct categories of concerns for grouping your
code is something you have to do based on your specific case or
domain knowledge.

Also, while these kinds of scripts kind-of worked in the past when we only
had browsers as clients, what would you do if you wanted to support native
mobile apps? You would have to either rebuild the application or build
something completely different.

One approach to solve this thigh-coupling between front and back end is to
use a layered architecture, as shown in the following figure:

Presentation Layer

Response

Business/Services Layer
Request

Persistence Layer

Figure 2.5: Layered architecture.

In some literature, the business and services layers are separate, and we
have an extra data access layer after the persistence layer. The idea is just to
organize your applications by the concerns they address.

In the layered architecture, we organize our applications in layers such as:

e Presentation layer: All code related to display and format data for the
end user.

» Business/Services layer: All code related to transform data to the
expected format to accomplish all functional requirements.

* Persistence layer: All code related to the interaction with the external
data storage: Saving and retrieving data. It translates data from the
format in which it is stored into a format that can be used by the
business and service layers (e.g. relational tables to Java classes).

Note: The layered architecture as presented in most books and
educational resources might not be the best distribution for all
projects. The most common use of layered architecture is in
monolithic applications, and in such, things like deployment or
scalability can be cumbersome.

Actually, many resources even set up the layered architecture as a
strict alternative to client-server. This is a very opinionated and
pragmatic approach, as we can build client-server applications that
also follow a layered architecture..

The main takeaway from there is that the separation of concerns
allows our developers to work independently and in parallel.

Be flexible while implementing architecture patterns, and apply the
concepts from these architectures which make sense for your specific
case.

How do you actually split your code? It depends on the technology,
framework, or even language you’re using. The idea is to split your code in
a way that allows teams work independently without blocking each other.

Splitting clients

One advantage of the separation between the presentation and the business
layers is that we can not only have a layer in our server for the presentation
code, but we can also extract it completely from the web server.

In modern development of client applications, the presentation code is build
and deployed independently from the server code. For instance:

e Web applications projects using tools like React or Angular, deployed
to their own web servers.

* Native mobile applications created with tools like Swift for iOS or
Kotlin for Android, and deployed to app stores for clients to install
them directly in their devices.

This separation of concerns is great! You can hire teams of web, Android,
or 10S developers and they can work in parallel to API and server-side
developers.

All you need to do in order to guarantee that this independence holds in
place is to create well-defined contracts between the web server and these
presentation-based clients. We will visit this concept of contracts in Chapter
3, Designing APIs.

Client versus server computing

A common interview question is: Considering the power of modern clients
and current servers, where should you do most of the processing work for
an application?

The answer like in every question that deserves to be asked is it depends.

The advantages of shifting processing work towards the client are as
follows:

Less latency: Since clients don’t need to make requests to the server
for any operation, they can save all the time used in network calls and
improve the user experience.

Less load for the server: The server is more performant and will be
able to support more clients.

Increased privacy: Dealing with sensitive personal data becomes
easier as your user’s personal information never leaves their devices;
you don’t have to worry about things like encryption in traffic.

The disadvantages, of course, are as follows:

Low consistency: Certain sensitive operations (like bank transactions)
require high consistency requirements. It’s not possible to fully
perform these kinds of transactions in the client’s device, as they need
to be consistent with the information of all other users.

Access control concerns: There are certain resources that cannot be
sent securely to a user’s device. Sensitive information from other users
in the system might be required for the operation, and that information
can only be safely operated in the server.

Performance concerns: Some operations might be too
computationally heavy for a client device.

Version fragmentation: Not all client devices run the same client
version. Some browsers are outdated and some Android devices run in
previous OS versions. Since we cannot guarantee that all clients run in
the latest versions of their software, not all of them will have the same
feature set available. A good example is all the browser-compatibility
issues which have plagued web developer since decades ago.

Variable client performance: Similar to version fragmentation, not
all devices have the computing power to perform memory-intensive
operations. Also, the more we shift operations into the client, the more
power it will require, causing battery problems in mobile devices.

Moving business logic into a client should be done in an as-needed basis. A
good rule of thumb is to start by putting all the business logic in the server

and slowly move pieces of logic into the client, as it makes sense.

The features that would bring the biggest performance gains are those that
are mostly constrained by network latency and that don’t require a lot of
processing power to be executed.

An iterative approach will give you more control and better insight into
which pieces of logic do bring a positive impact to your users.

Web servers as stateless services

By design, HTTP is supposed to be stateless. This means that the HTTP
server itself is not expected to keep track of any state information; the
server won’t remember whether a client has done a request before, or if a
request is related to another.

By having HTTP servers being stateless, they can be treated like
interchangeable resources. This provides multiple advantages:

e Better performance: You can create a cluster of multiple servers
running the same web application. Then, put a Load balancer in front
of them to redirect client’s requests to any of the servers in the cluster,
following something like Round-robin.

» Better availability: If you have a cluster of stateless servers, if any of
the servers fails, you can easily replace it with a new one, without
worrying about backups.

If servers are stateless, how do we keep track of user sessions?
We have designed workarounds to make it seem like HTTP stores the state.
Some of those tricks are as follows:
o Keeping track of a user session by sending a session token in each
request through cookies.
e Calling a web API sending authorization tokens in each request to
allow the server to know which user is making the request.

In each request, the HTTP server will validate the token as if it was the first
time it received it. It doesn’t matter which server in the cluster received the
request; all of them perform the same action.

These workarounds are embedded in the way our clients work. Browsers
store the session cookies and make sure users don’t have to input it in each
web page they visit.

Storing session data

Certain applications are required to store data that is either too big or too
sensitive to be passed back and forth between the client and the server in
each request. In those cases, we want a way to persist the state of a user’s
session.

Some developers feel tempted to store this session state in the same server;
either in an in-memory structure, a local file, etc. And they even work
around the way Load Balancers function by creating “sticky sessions’:
Once a load balancer directs a request to a server, it will redirect all further
requests from the same client to the same server.

Keeping storage in the web server itself is not optimal, as it prevents load
balancers from distributing requests evenly across servers in a cluster, and
in case of server failure, you will probably lose that state (unless you add an
extra strategy to back it up before the failure happens).

So, where do you keep the session data?

Low-durability caching services like Redis address this kind of problem:
they offer a storage service which is external to the HTTP servers
themselves. Each server stores the session state in the same Redis cluster. If
the HTTP server fails, a new server can be deployed and connected to
Redis. Redis is fast enough that it has almost no downsides when compared
to the local in-memory local storage.

We will discuss more data storage strategies in Chapter 5,_End-to-end Data
Management.

Use case: Applying a client-server architecture to
the Pizza Place app

Let’s take a look at two of our functional requirements for the Pizza Place
app:

o Users should be able to see the menu on their phones or computers.

e The menu should be updated by the managers at the Pizza Place so
that the users can only make orders of pizzas for which they have
ingredients in stock.

From requirement number one, we can deduce that we want to build both a
mobile app and a web app. This means that we will have to support at least
three different clients: Web, Android, and 10S.

From the second requirement, we know that the information given by the
app to the users’ needs to be frequently updated (at least a couple of times a
day). This means that the clients will need to fetch the most up to date menu
from somewhere, instead of keeping the menu as a static website.

From these two simple requirements, we can see that we need to rely on a
client-server architecture, instead of doing something like static, purely
client-based apps.

Now, let’s review the first non-functional requirement we have:

e The application should be as small as possible to correctly serve the
small user base the Pizza Place has right now.

We know that we are building a small application that is expected to grow.
This means that we have the flexibility of hosting the whole application in a
single server; but we also have to structure it so it can grow once it’s
needed.

For this, let’s apply a modified version of the layered architecture. Since we
need multiple clients, let’s completely split the presentation layer into
independent client applications (one project for web, one for native mobile).

Now, for a large application, we would also split the business, service, and
persistence layers into their own servers. However, our current requirement
points us to put everything in a single server. So, a healthy balance is to
create logical layers.

This means that we will create a single project for these three layers, but we
will split the code into functions or classes grouped by each of the layers.
This will create a healthy separation between code for business
functionality and code for data persistence.

As mentioned earlier, don’t get caught in rigid definitions of these
architectures. They are recipes we can tweak and adapt to our specific use
case.

The overall application structure for the Pizza Place application is shown in
the following figure:

Android client Web client i0S client
LI o=} ;
E' Presentation Layer
| —)
> — < Business layer AND
Web Persistence layer.
server
_.-'-"'-'-F..-'-"""
Backend code

Business layer

Database

Persistence layer

Figure 2.6: High-level view of the architecture for the Pizza Place application

We are using this design for the first version of our application because it
addresses all our requirements and we are still taking advantage of the
benefits of the client-server and layered architectures.

The logical layers approach allows us to iterate faster, as we don’t have to
worry about managing multiple servers or projects. The logical separation
still separate concerns and, as our application grows, these layers can be
extracted into their own servers as needed.

Client server versus peer-to-peer

Before we complete reading this chapter, it’s important to acknowledge the
existence of alternative architectures. Peer-to-peer (P2P) architectures
differ from the client-server architecture in the fact that here each node in
the network is both client and server.

In Figure 2.6, we can see the topology of a typical P2P network with five
peers:

—L

ot Client

Q-

Client

L

Client

Client Client

r%w*——*%w

Figure 2.7: Example of a Peer-to-peer architecture. Peers connect to each other

Data storage and processing is distributed across multiple clients or peers.
A client connects directly to its peers to fetch data they need, and if for
some reason the peer goes down, the client can connect to any other peer in
the network.

The main benefit of P2P is that it is a decentralized architecture. It means
that there 1s no single server that can be a bottleneck or a single point of
failure.

Another benefit is that you don’t need servers with tons of memory to host
an application, as the computing is distributed among the peers. This could
be a very powerful architecture for collaborative work.

The most famous implementations of P2P are BitTorrent and Blockchain.
BitTorrent enables file sharing among all the peers in the network, and
Blockchain makes copies of the ledger of transactions in each peer.

It’s curious to know that the adoption of both of these in the public has
proved to be controversial at times, due the potentially gray areas that the
use of these protocols brings with them: The lack of centralization also
means that no single entity can regulate the application’s content.

There has been some exploration about implementing HTTP as a P2P
protocol, as well as possible P2P-based replacements. However, there is so

much infrastructure in place that already relies on HTTP and the server-
client architecture that it’s not easy to find a suitable replacement.

For better or for worse, HTTP is here to stay for the near future.

Conclusion

The client-server architecture is the base on which web applications are
built. This architecture model has enabled easily sharing with people the
resources or data that is concentrated in a central computer.

The client-server architecture i1s used in multiple layers within our
applications: In HTTP, in database server connections, in mobile apps,
FTTP clients, etc. User interfaces are only one type of client, and anything
that connects to a server can have the role of client.

We saw the inner workings of a web server implementing HTTP: how to
build the main process for a server, how to listen for requests and provide
responses. We also reviewed some examples on the kind of resources we
can return to clients from a server, either static or dynamic.

We discussed HTTPS, SSL certificates, and the importance of enabling
them in a web server. Production-ready servers like Express provide a
simple interface to configure horizontal concerns like encryption or data
compression in server responses. No modern web application should ever
be deployed to production without enabling HTTPS first.

We looked at how legacy web applications can combine multiple concerns
in single source code files, like common PHP examples, resulting in highly
cohesive teams of developers that cannot work on the application in
parallel.

We talked about layered architectures and how they try to address a better
separation of concerns. And, taking a step further in separating presentation
concerns into its own project, we end up with the architecture followed by
modern client applications developed for web, Android, or i0S. Client
applications run in their own projects and can be deployed independently
from the server which implements business logic.

Balancing the implementation between business logic between clients and
servers require fine tuning, as there are trade-offs between putting too much

logic in each side. If you want to err on the safe side, most of the time the
server should contain the majority of the business logic.

We understood that web servers should be built and deployed as stateless
resources. The lack of state at the web server level allows us to discard and
spin new instances of the server; or to seamlessly split requests evenly
across multiple servers in a cluster.

Lastly, we talked about some alternative architectures like peer-to-peer. P2P
architectures can perform better than client-server for cases where data
needs to be de-centralized.

Having a strong understanding of how HTTP works; we now have most of
the tools required to take a deep dive into the topic of designing and
building APIs, which we will discuss in the next chapter.

Questions

e Can a software application be both client and server? Why?
e What is the role of load balancers in clusters of HTTP servers?

e What are the advantages of processing information directly at the
browser or mobile applications?

e What are the advantages of using a layered architecture? Can you
think of a use case where it might not work great?

e What would happen if we store the user session in the web server and
that server crashes? What would the user see?

e Given that HTTP is stateless and we send authentication tokens in
each request (usually through cookies), what would happen if we used
unencrypted HTTP and someone could read our request information?
How would a malicious person use that sensitive information?

References

e Java Stream API:

html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

e RFC 7230 - Hypertext Transfer Protocol (HTTP/1.1): Message Syntax
and Routing

https://datatracker.ietf.org/doc/html/rfc7230
* Free SSL certificates at LetsEncrypt

https://datatracker.ietf.org/doc/html/rfc7230
https://letsencrypt.org/

CHAPTER 3
Designing APIs

Any communication between two entities requires some level of
agreement between both. If one person speaks to another, there is an
assumption that both persons share a language (and a common context) that
would allow them to decode the meaning of the words the other person is
saying. Without this agreement, words are just noise. Languages allow us to
encode and decode this noise into meaningful concepts.

This agreement also exists between elements in a computational system
who try to communicate. At the lowest level, we have protocols like
TPC/IP or UDP, which dictate a contract on how two computers
communicate in a network: The sequence of steps required to establish a
connection, the agreed structure for the packets to be sent back and forth,
and so on.

Computers receive streams of bits sent by other computers. Network
protocols provide a blueprint on how to group these bits into data structures
that have a meaning for the computer and its users. These blueprints are the
“language” computers speak.

At a higher level, communication between two computers (a client and a
server, for instance) has protocols that allow sending complex data back and
forth, like HTTP. We have seen how client-server architectures rely on a
shared contract that describes how HTTP requests and responses should be
structured. As long as clients and servers both follow the predefined
contracts, they will be able to communicate successfully.

In an attempt to create more complex contracts, techniques like REST and
SOAP have been created on top of HTTP. They can be grouped in the
concept of web services but in the past few years, they have also been
labeled as “APIs”.

In this chapter, we will discover all you need to know about APIs. Since
“API” is a very abstract concept, we will disambiguate the most common
use cases.

We will also discuss the most currently popular implementation of web
services: REST. We will review some best practices for designing clean
REST APIs and how REST services contrast against other protocols like
SOAP and gRPC.

Then, we will discuss how APIs provide flexibility in distributed
applications and how they can be leveraged independently from the front-
end clients which consume them.

Structure

In this chapter, we will learn the following topics:

e What is an API?

o Functions as contracts

Interfaces and design patterns
Remote APIs: RPC, SOAP, REST, GraphQL

o Building a remote API with RPC/gRPC
o SOAP and web services

Building REST APIs

(o]

Actions versus HTTP request methods

o

Relationships

o

Versioning

o

Caching

Effective REST APIs: HATEOAS
o Building APIs with GraphQL

Building standalone APIs

o Standalone API: Headless CMS
o Standalone API: Public APIs

Use case: Designing a remote API for the Pizza Corner

Objectives

After reading this chapter, you will be able to understand the different types
of programming interfaces and their uses. You will know the advantages of
using interfaces and APIs to abstract out implementation details. Also,
you’ll understand the use cases and differences between the major tools to
build remote APIs: REST, RPC, SOAP, and GraphQL. You will have a
basic understanding of how to write and design effective APIs that are
flexible enough for multiple clients to consume.

What is an API?

An Application Programming Interface (API) is a contract that defines
all the information needed for two software-based entities (functions,
applications, servers, etc.) to communicate with each other.

Every API describes the following two basic things:

e A list of models describing the expected format of the data to be
transferred in the API’s actions.

e The actions that are available to be performed on with those models or
entities.

Some specific types of APIs will have other characteristics (for example,
REST APIs define an HTTP verb to be used, SOAP defines an XML
structure, and so on) but in the end all APIs share at least these two
requirements.

Functions as contracts

At the lowest level, you can think of function signatures as a part of an API.
For instance, the std package in C++ provides a function to_string. If you
look it up in C++’s documentation, you will find a list of method signatures
like the following:

string to_string (int val);

string to_string (float val);
string to_string (double val);
string to_string (long double val);

Notice that these signatures contain the following two basic requirements
we require for an API:

e The expected format of the function input: £loat, double, among
others.

e An explicit list of the allowed operations (for example, convert an
input into a string).

How does the std package implement each one of these functions? We
don’t know, and most of the time, we don’t care. We have the guarantee
that, as long as you call the function with the expected parameters, you will
receive back a string representation of the input.

Of course, you could go and look for the source code of ‘std’ and find the
implementation, but you don’t need to know it in order to use the function.
Just think of all the standard library functions you have used in your code
for which you have never seen their implementation.

It’s safe to assume that the list of function signatures is the API of the
std: :to_string package. It might seem a bit redundant that each function
is called exactly as the package that exposes them, but this is more a design
decision for this specific example than a problem with our definition of
APL.

Interfaces and design patterns

In some coding languages, the concept of API is distilled as a component of
the language itself. In Java and C# we have interfaces: A special structure
that defines a contract. In general, the interface cannot be used directly and
a concrete class needs to implement it.

Here is an example of a simple C# interface:

1. interface ISampleInterface {

2. void SampleMethod() ;

3.

4.

5. class ImplementationClass : ISampleInterface {
6.

void ISampleInterface.SampleMethod () {

7
8.

9. }

10.

11. static void Main() {

12.

13. ISampleInterface obj = new ImplementationClass();
14.

15. obj.SampleMethod() ;

16. }

17.

In the preceding example, the interface 1sampleInterface is defined with a
single function sampleMethod. The function has no parameters and returns
no value.

Interfaces are one of the purest examples of an API. Notice how the
implementation only defines the method signature, with no body. If you
tried to instance ISampleInterface directly, the compiler would give you
an error.

For this reason, we will create a concrete class ImplementationClass that
implements the 1sampleInterface interface. C# (as well as Java) requires
any concrete class implementing an interface to also implement each
function in the interface. That’s the reason why ImplementationClass
deﬁneS£1bOdyfbrV0ﬂiISampleInterface.SampleMethod(L

Java’s example is very similar:

l. interface ISampleInterface {

2. void SampleMethod() ;

3.}

4.

5. class ImplementationClass implements ISampleInterface ({
6. @Override

7. void SampleMethod () {

8.

When first learning interfaces as part of Java or C#, many people ask
themselves: Why go through the trouble of defining an interface if I will
have to define each function again in the concrete class? It’s a natural
question, as it seems like a waste of effort.

The answer is that we can write multiple implementations for the same
interface, and those implementations can be used interchangeably. As long
as consumers use the interface directly, they don’t care which
implementation they are getting. Let’s look at an example.

Let’s say we want to define a service to store an order object in a database.
Today, we will use a MySQL database, so our orderService class gets an
instance of the MysgQLservice to save the data.

The following is an example service called orderservice that shows how
the application uses MysQLService to persist Order objects:
.class MySQLService {

boolean saveOrder (Order order) {

class OrderService {

MySQLService dbService;

O 0N Uk W N

10. public OrderService (MySQLService dbService) {
11. this.dbService = dbService;

12. }

13.

14. void processOrder (Order order)

15.

16. this.dbService.saveOrder (order) ;

17. }

—_
o0

19.
20. class App {

21. void newOrder () {

22. OrderService service = new OrderService (new
MySQLService()) ;

23.

24. service.processOrder (order) ;

25. }

26.)

Notice how we are passing MysQLService through the orderservice
constructor, instead of calling the MysQLservice constructor inside
orderService’. This is called inversion of control (IoC), and it help us
remove a strong dependency between both classes.

Continuing with our example, a few months later after we discover we need
to migrate the MySQL database to a MongoDB database. Taking advantage
of the IoC pattern, we create a new service called MongoDBService and
we inject it to the orderservice.

The following is the class definition of MongoDBService:

1. class MongoDBService {

2 boolean saveOrder (Order order) {

3.

4

5.}

Having used IoC made this change a bit easier, but we still need to update
both app and orderservice to use this new service class. This means that

we have to update every line of code where MysQLservice 1s defined and
used.

If we had relied on interfaces, this migration would have been a lot simpler.
The following code shows an interface-based implementation of
DbService:

1. interface DBService {

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

S B A A

boolean saveOrder (Order order);

//.. other methods, maybe like getOrder
}
class MySQLService implements DBService(
boolean saveOrder (Order order) {

// Do SQL stuff..

class MongoDBService implements DBService{
boolean saveOrder (Order order) {

// Do Mongo stuff..

class OrderService {

DBService dbService;

public OrderService (DBService dbService) {

this.dbService = dbService;

void processOrder (Order order) {
// do things to the order, then save 1it:

this.dbService.saveOrder (order) ;

class App {

32. void newOrder () {
33.

34, OrderService s)
MySQLService());

new OrderService (new

35.

36. OrderService sY = new OrderService (new
MongoDBService()) ;

37. sl.processOrder (order) ;

38. s2.processOrder (order) ;

39. }

40.

The consumer uses our DBservice API directly. Then, the concrete
implementation is passed to the constructor of orderservice. This is a
pattern known as dependency injection, which is just a more specific
version of [oC.

We can swap the implementation any time, or even have two instances of
ordersService using different implementations of bBservice. We can create
more implementations without ever needing to update orderservice.

The assurance here is that, as long as orderservice follows the contract
defined in the interface, any service that implements that same contract will
work as expected. These implementations can be local functions, clients for
remote APIs exposed by other servers, or even test mock functions. The
consumer doesn’t need to know which implementation they are using.

The use of APIs at the programming interface level allows us to implement
some of the most common Gang of Four's structural design patterns:
e Adapter pattern: It allows two incompatible classes to work together
by wrapping an interface around one of the existing classes.

e Facade pattern: It provides a simple interface to a more complex
underlying object.

e Proxy pattern: It provides a placeholder interface to an underlying
object to control access, reduce cost, or reduce complexity.

All these patterns rely on interfaces introducing an abstraction layer that
removes complexity or incompatibility of a consumer with other services.

Remote APIs: RPC, SOAP, REST, and GraphQL

When we think of APIs, there’s a good chance we are thinking of executing
code running in a remote machine. The simplest case we might think of is
having a web or mobile client that makes a request to an “API”, which in
turn is hosted in some remote server.

Using our previous definition of API, a remote API is a server that exposes
an interface for clients to read and consume, but the communication
happens through a network.

In our previous example, boolean saveOrder (Order order) was declared
and implemented in the same application as the client that consumed it.
What if, instead, we wanted to save the data in a database running in a
remote database?

Just as we could swap implementations to use MySQL or MongoDB
without having to wupdate the client service, we can create an
implementation that makes a request to an external server. This is known as
Remote Procedure Call (RPC).

The following figure is a high-level view of the multiple implementations
of DBService:

MySQLService |,
processOrder) { ... }
DB —
_Serw:::e MongoDBService |,| DBWebService o
interface processOrder() { ... } @)
. ol i E-8 ==
processOrder() POST fprocassOrnder
RemoteDBService- | —
processOrder() { ... }

Figure 3.1: Defining multiple implementations for a programmatic interface

RPC allows the code to make requests to external servers by calling RPC
functions which are no different from regular, local functions (like boolean
saveOrder (Order order)). RPC implementations abstract away all the

logic required to communicate with the external server so the developer can
focus on writing business logic.

Building a remote API with RPC/gRPC

There are many implementations of RPC, from Java’s Remote Method
Invocation (RMI) or Common Object Request Broker Architecture
(CORBA), all the way to the newer gRPC.

However, at its core, RPC can be done with a simple HTTP
implementation. For instance, to support an RPC version of saveOrder or
getorder that relies on HTTP, you can create the following endpoints:

POST /api/saveOrder

GET /api/getOrder?id=123

Now, you can create an implementation for pBService which makes
requests to those endpoints:

class RemoteDBService implements DBService(

HttpClient httpClient;

boolean saveOrder (Order order) {

HttpResponse<String> = httpClient.post (

e T A o i e

HttpRequest request =
HttpRequest.newBuilder () .uri (

10. URI.create(
))
11. .header (,
)
12. .POST (orderRequest)
13. .build()
14.) ;

15.

16.
17. }
18. 3

This is the power of programming interfaces. We can not only change the
type of database out application uses almost seamlessly, but also we are
able to migrate from using a local implementation to make requests to an
external server. All without changing the code that calls saveorder.

“Hold on”, you might say. “I’ve seen this before. This is not RPC, this is
REST!”

It is a very common misconception to think that making any HTTP requests
to a server using a few distinct HTTP verbs is REST. Actually, the most
popular instance of RPC in the recent years, gRPC, relies internally on
HTTP/2 for communication. To these web endpoints that look suspiciously
close to a REST API we call them ‘RESTful services’. Protocols like OAuth
rely on RESTful calls without being fully REST.

Without proper context, it’s easy to get confused about the differences
between the multiple tools we have to build remote APIs. For example,
there is the notion that RPC is an outdated and undesirable way of building
APIs. This is far from being true.

In reality, RPC is a pattern very useful for building modern applications.
Maybe it wasn’t as widespread a few years ago because most
implementations of RPC where vendor or language specific (like Java’s
RMI), while SOAP and REST started to allow developers to integrate
applications built in different tech stacks. But the popularity of new
protocols like gRPC or Thrift has given a new breath of fresh air to this
pattern.

To underscore its advantages, let’s leave aside HTTP and REST for a
second and focus on a specific example of modern RPC: gRPC.

Figure 3.2 shows the communication flow between a gRPC server and the
client making a remote call to the sayHello(..) method:

Order

AiEECCHETI— . . gRPC server

SayHello(...); O— SayHello(...) { }

(binary data over HTTP/2)

Figure 3.2: Example of a gRPC request

Relying on Protocol buffers (protobuf), gRPC creates an interface using the
language definition proto3, which defines models and actions. These
simple models are then processed to auto-generate the code to be used by
both the server and the client to communicate.

The following is an example of a protobuf interface model:

1. = ;

2. helloworld;

3. go_package = ;
4, java package =

5.

6. message Message {

7. body = 1;

8.}

9.
10. HelloService {

11. SayHello (Message) returns (Message) {}
12.)

Here, we are defining a helloworld.proto file that contains one single
remote method, sayHello, and a model called Message.

The other options described at the top of the file are metadata which
protobuf will use when generating code; for example, go_package is used
for creating a Go module while generating the Golang code, and
java_package gives a package name to the generated Java classes.

Tip: Search term: protobuf

A protocol buffer is a library built to serialize data. It relies on the
creation of models and actions written with the language “proto3”
which is a definition language similar to XML or JSON.

This library can generate code based on the models built in proto3. It
also has plugins that allow you to generate code for creating clients
and servers using gRPC.

We can build this model using any of the supported languages. For instance,
you can generate the gRPC client-server code for Java with the following
command:

l.protoc -—-Jjava_out=api --plugin=protoc-gen-grpc-java

proto/helloworld.proto

This will generate the com/example/grpc/Helloworld.java class inside
the api folder. There are plugins that integrate protoc with common
frameworks like Maven or Gradle, which will allow you to generate the
API’s code as a part of your application compilation workflow.

Alternatively, you can run the following command and generate a Golang
version of the same interface:

l.protoc --go_out=plugins=grpc:api proto/helloworld.proto

This command will generate a Go file called helloworld.pb.go inside the

api/models/helloworld directory, just as the helloworld.proto file
described.

This generated code is not meant to be edited directly. If you want to make
changes, update the model and regenerate the code. Otherwise, you risk
other developers (or yourself) overwriting your changes when they re-
generate the API’s code.

Build the gRPC server

Let’s use Golang to build both a client and a server for a gRPC API.
Assuming you have a basic set up of Go installed on your local
development machine, create a module go.mod with the following
definition, which includes all the required dependencies for gRPC:

1. module example.com/grpc

9.
10.
11.
12.
13.
14.
15.

16.
17.

18.

N AW

.go 1.17

require (
golang.org/x/net vY Y AYYYYSEYYA—+ ..+ —CAQrSoANEY Y
google.golang.org/grpc vY.¢« .+

google.golang.org/protobuf vy.YVY.)

require (
github.com/golang/protobuf vy.o.Y // indirect

golang.org/x/sys vAo—-Y Y s Y¥YYYYYEVe—+ .+ +caVcobdocd //

indirect
golang.org/x/text v+.Y.+ // indirect

google.golang.org/genproto vY Y+ +oYTIY¥YYYAoo—+ .+ +—
cbYYevaaY+\yY // indirect

)

If you don’t want to create a module, install each dependency manually
using the go get command:

1.

go get google.golang.org/grpc@v1.40.0

Then, create a file called server.go. This file will contain the code for the
gRPC server Then, add the following code to server.go:

l.package main

2.
3.
4.
5.
6.

import (

8.

10.
11.
12.
13.
14.
15.
16.

17.

18.

19.
20.
21.
22.
23.
24.

25.
26.
217.
28.
29.
30.
31.
32.
33.

helloApi “example.com/grpc/api/models/helloworld”
“golang.org/x/net/context”

“google.golang.org/grpc”

type ServerHandler struct {}

func (s *ServerHandler) SayHello(ctx context.Context, in

*helloApi.Message) (*helloApi.Message, error) {
log.Printf (“Receive message body from client: %s”,
in.Body)
return &helloApi.Message{Body: “Hello From the

server!”}, nil

}

func main () {

fmt.Println(“"Starting gRPC server!»)

listener, err := net.Listen(“tcp”, fmt.Sprintf(":%d”,
9000))
if err !'= nil {
log.Fatalf (“Error with server connection: %v”, err)
}
s := ServerHandler{}
grpcServer := grpc.NewServer ()

helloApi.RegisterHelloServiceServer (grpcServer, &s)

34.

35. if err := grpcServer.Serve(listener); err != nil {
36. log.Fatalf (, err)
37. }

38. 3

If you’re not proficient in Golang, don’t worry. This code is simple enough
that you can understand the most important parts without a strong
knowledge of the language. But, if you want to feel more comfortable with
the code, take 20 minutes to check out the website “A four of Go” at
https://tour.golang.org. That should be more than enough knowledge to
fully understand this example.

This sub-module server.go is part of the main module example.com/grpc
(which we defined in go.mod), so all our local code will be imported from
that package name.

In the line helloApi ‘“example.com/grpc/api/models/helloworld’, W€
import models/helloworld from the main example.com/grpc package.
Again, models/helloworld is the code we generated with the protoc
command.

We define a structure called serverHandler that will contain all the code
used by the server to handle the API requests. In this case, the structure has
a single method, sayHello which just prints a message in the log and
returns the string “Hello From the server!” back to the consumer.

The RegisterHelloServiceServer function was created by protobuff’s
gRPC plugin, and all we have to do is give it an instance of *grpc.Server
and an instance of the serverHandler to create a server.

If we compile and run this Go application, a server will start in the
localhost:9000. For example, the following steps compile and run the server
in a Unix-based OS (MacOS, Linux, etc):

I.> go build server.go
2.> ./server
3.Starting gRPC server!

If you’re running in a Windows-based system, go build server.go will
create a server.exe file that you can run.

Build the gRPC client

Now, in order to consume our RCP API, we need to create a gRPC client.
The code for the client is as simple as the code for the server:

l.package main

2.

3. import (

4.

5.

6.

7.

8.

9. helloApi

10.)

11.

12. func main () {

13. var conn *grpc.ClientConn

14. conn, err := grpc.Dial(, grpc.WithInsecure())
15.

16. if err !'= nil {

17. log.Fatalf (, err)
18. }

19.
20. defer conn.Close()
21.
22. c := helloApi.NewHelloServiceClient (conn)
23.

24. response, err := c.SayHello (context.Background(),

&helloApi.Message{Body: })

25.

26. if err !'= nil {

27. log.Fatalf (, err)

28. }

29.

30. log.Printf (, response.Body)
31. 3

The important parts of the code can be split in two snippets. First, we
connect to the remote API server that is running in localhost:9000:

1.
2. var conn *grpc.ClientConn
3.

4. conn, err := grpc.Dial (, grpc.WithInsecure())

5.

Since this is just a demo, we can use grpc.WithInsecure () to allow the
gRPC client know that we will not use authentication or encryption in this
connection.

In our second snippet, we have the code which actually executes the remote
procedure sayHello and prints the response:

1

2.¢c := helloApi.NewHelloServiceClient (conn)

3.

4.response, err = c.SayHello (context.Background(),
&helloApi.Message{Body:)

5.

6.log.Printf(, response.Body)

7.

Notice how, for the client, the second code snippet looks just like as if you
were executing a local function. The type of response is
*helloApi.Message, Which is one of the auto-generated classes we created
using the protobuf model.

If you compile and execute the client, you will see a message in the server
like 2021/09/06 13:03:30 Receive message body from client: Hello
From Client!, and a message in the client’s log similar to 2021/09/06
13:03:30 Response from server: Hello From the server!.

When to use gRPC

Data transmission in gRPC is extremely efficient, as data 1s serialized and
deserialized using binary data, unlike REST or SOAP which tends to use
the text-based formats JSON and XML.

Notice also that the main idea behind RPC is that a local function
implementation is moved to a remote server, “hiding” from consumers that
it’s actually a remote call.

RPC creates a tight coupling between the client and the server. Since we are
abstracting functions from the client into the server, the API we build with
RPC has a low level of abstraction, exposing more implementation details
than other types of remote APIs like REST.

The tight coupling between producers and consumers makes RPC ideal for
communication in environments of distributed systems -like in
microservices architectures- where all the elements in the system interact
with each other as if they were making calls to local functions.

One disadvantage of that tight coupling is that RPC has low discoverability,
which means it’s difficult for clients to figure out what kind of operations
they have available to call. We have to rely on the assumption that the API
owner will provide compiled clients, or at least consumers will have a list
of all the remote functions, and that they fully understand what each
function’s name means.

A situation which illustrates the discoverability challenges for RPC is that
of an API that has two separate functions (for instance, saveOrder and
createOrder) that might behave differently in specific contexts, but they
offer no good description about their differences. It’s not easy for
consumers to figure out which function will work best for their use case.
Clear and updated documentation becomes a critical part of RPC;
otherwise, people will not read it and fail to adopt your API.

In general, naming conventions (or the lack of thereof, as naming things is
hard!) is one of the biggest obstacles for clients to adopt RPC APIs. RPC

APIs end up having increasingly complex methods like
getOrderForRegularCustomer OI getOrderForPreferredCustomer (We
have to expose more functions as we need to support new use cases) which
require consumers to always have up-to-date knowledge about the
implementation details and context of the server to know which function to
call.

SOAP and web services

We will not go in depth on the topic of Simple Object Access Protocol
(SOAP), simply because it’s not so commonly used anymore for new
projects. However, we still need to acknowledge it exists so we can contrast
it with other options.

When talking about application design, the concept of API is usually used
interchangeably with the idea of web services: A few years ago, web
services were a synonymous of SOAP services.

SOAP is a messaging protocol commonly built in top of HTTP (some old
implementations relied in SMTP) which defines XML contracts for
communication between two remote services.

The consumers discover all the available operations using a Web Services
Description Language (WSDL) file. The WSDL file defines an XML
structure for the incoming and outgoing data used by each operation.

The following is just a part of the WSDL definition file for an operation
called sayHel1lo which receives a String as input and returns another String
as output:

I...
<message name= >

2. <part name= element= />

3. </message>

4.

5. <message name= >

6. <part name=
element= />

7. </message>

. <portType name= >
10. <operation name= >
11. <input
wsam:Action=
message= />
12. <output
wsam:Action=
message= />
13. </operation>

14. </portType>
15. .

In every request, the consumer will create an XML envelope (with a similar
format to the XML described in the WSDL), fill it with the request
information for each parameter in the request, and send it to the provider’s
endpoint.

SOAP shares many characteristics with gRPC: Both have a definition file
which declares all methods, models, and payload types used by the API
(proto3 for gRPC, WSDL for SOAP). Both have libraries which can
generate code for clients and servers from their definition files.

However, unlike gRPC, SOAP doesn’t serialize all requests and responses
into binary data. It sends these bloated XML documents, which increase the
network traffic size, making the communication “chatty”.

Also, since WSDL files are difficult to build manually, developers usually
build the models using the code in a specific language like Java, and then
generate the WSDL from those same code models; then, they that same
WSDL model to generate clients in other supported languages.

Due some of its advantages we will discuss next, REST slowly overtook the
web service market away from SOAP. But mostly, people saw in REST a
less complex, less chatty option for building remote APIs.

When would you use SOAP? Probably in legacy systems which need
support. It’s rare nowadays to have development teams choosing SOAP for

building new projects, as most of the time REST, GraphQL or gRPC have a
better performance than SOAP.

Building REST APIs

Representational state transfer (REST) is the most ubiquitous type of
remote API at the time this book is written, and it has been for some years.

The use of REST is so common that many developers confuse the concept
of APl as a whole with REST. Many people use these concepts
interchangeably when, as we’ve seen, they are not equal.

REST is a pattern built in top of HTTP to allow communication back and
forth between servers and their clients; usually using JSON-formatted
strings to serialize and deserialize data in traffic.

REST gained popularity in a time where developers were struggling with
maintaining their SOAP services. Debugging, monitoring, and inspecting
traffic in SOAP services was a headache, and the leaner, human-readable,
JSON-based traffic seemed to be a better alternative.

REST exposes a list of resources. These resources are abstractions of real-
life elements like orders or users, or concrete things, like products, cars,
food, among others. These resources are represented as URLs exposed by
the API server.

Then, we use elements of the HTTP specification to act on those resources.
We use HTTP methods to describe and perform actions on our resources;
and HTTP codes to describe the result of such actions.

By abstracting resources, we create a layer that separates the API from both
providers and consumers. As long as they follow the REST patterns,
consumers and providers can use their own naming conventions on the
functions used to make and handle the API requests, reducing the coupling
between them.

Resources can be defined as models of attributes. We can use JSON to
express the model definition for a resource. For instance, a model for order
can look as follows:

1. Resource: Order, URI: /order, Model:
{

: 34.12,

e A A S

}

By combining a resource URI with a HTTP method, the client can perform
all the available actions for that given resource:

OPTIONS /order

GET /order

PUT /order

POST /order

PATCH /order

DELETE /order

Just as any HTTP request, each action in our API is defined as the function
(HTTP_VERB ENTITY URI) -> HTTP_STATUS. For instance, to use the order
API for creating a new order, a client would make a ‘PUT /order’ request.
The API then would return one of a few possible statuses as the response:

* HTTP 201 Created: The order was created successfully.

e HTTP 500 Internal Server Error: There was an error creating the
order.

e HTTP 405 Method not allowed: Creating orders is not a supported
operation.

The following is a visual representation of the communication flow of the
PUT /order request:

id: "123124",

items: [...],

created by: "John Doe”,
created on: "2000-06-15...",
total: 34.12,

* 2 REST API
| 4

PUT forder OPTIONS forder

----- » GET Jorder
; PUT /ord
REST client BORT kil

i i -cct ot i PATCH /order
HTTP 201 Created DELETE /order

Figure 3.3: A PUT request which successfully creates a new order

Notice how we take the existing HTTP features and we repurpose them. We
give them a new meaning based on our API’s business logic. Response
codes like created have different meanings depending on which resources
they’re paired with.

What is the difference between REST and plain HTTP? The answer is “not
much”. REST is not a framework, nor a protocol. REST is just an
architectural pattern that uses a large subset of HTTP to enable the
integration between applications; and as such, it needs to follow the same
principles of HTTP, like being stateless and cacheable. At the same time,
REST can take advantage of the years of improvements we have built for
regular HTTP requests.

Note: In the previous chapter, we discussed HTTP as being a stateless
protocol, which means each request needs to include all the required
information to understand the request, without relying on the web
server to store a context.

Another HTTP principle is that requests need to explicitly declare if
they can be cached or not -aiming to being cacheable as much as
possible- as cacheable resources increase the performance of the
HTTP service.

Actions versus HTTP request methods

One of the goals of REST is to express as much as possible using existing
HTTP features, as an alternative of having to expose concrete functions.

For instance, instead of making a posT request to a /deleteOrder endpoint
to remove an order, we would send a DELETE request to the /order
endpoint. This simplification allows consumers to execute different actions
using just one single endpoint.

The use of a single endpoint for multiple actions reduces the uncertainty for
consumers. If they want to cancel an order, they don’t have to guess if the
function they need to call is named /deleteOrder or /removeOrder. As
long as they know that the endpoint /order exists, they can assume that
DELTE could be available (or use the verb OPTIONS to check what actions
are available for the endpoint).

REST relies on HTTP methods to express intent over a resource:
e opTIiONS: Retrieve a list of the HTTP methods available for this
resource.
e GET: Get one or many instances of the resource.
e puT/POST: Create a new instance of the resource.
e paTcH: Partially update an existing instance of the resource.
e DELETE: Remove an existing instance of the resource.

Tip: Search term: idempotency

Idempotency means that an action will only take effect once, even if
called multiple times. Calling an idempotent function multiple times
should render the same results after the first call. The implementation
of HTTP methods like OPTIONS, GET, and PUT are expected to be
idempotent.

POST is a non-idempotent operation, which means that calling a
POST method multiple times could potentially end up in multiple
side-effects and different results in each call. Some literatures call
non-idempotent methods “unsafe”.

Idempotency is a critical term for HTTP. Clients assume that
idempotent operations will behave as such, and they will allow cases
were a request can be sent more than once, simultaneously.

This list of HTTP methods is enough to express most of the actions that can
be done on a resource. Some other HTTP methods are less common, but
can also be used by REST, if it makes sense for the specific use case.

Note: Both PUT and POST can be used for creating new instances of
a resource, POST being most commonly used.

The difference between both is that PUT is assumed to be idempotent,
so making the same request multiple times should result in just
creating one single instance of the resource. POST doesn’t have such
limitations.

If the client is relying on the server to generate information such IDs
or names, POST is a better option. If all the information is provided
by the user in each request, PUT has a clearer intent. If you choose
PUT, make sure that your implementation works as expected.

Choose whichever works best for you, just be consistent.

It’s important to notice that these are the most common uses for each HTTP
verb. Some APIs can choose to implement just a few of them, or do some
slight variations. Always implement HTTP methods as defined by the
HTTP specification, and return consistent and clear messages, especially for
eITors.

There are use cases where an API needs to expose an action that cannot be
satisfactorily expressed using a combination of HTTP methods and a
resource. In these cases, you can rely on query parameters.

Let’s think of an example. If you want to fetch a list of orders, filtered by
year, you can add a query parameter to rely this information to the GeT
action:

GET /order?year=2021

You can also express things like sorting by a specific attribute of the
resource.
GET /order?orderBy=price

Query parameters offer a lot of flexibility, as you can use as many as you
need and they are not tied to specific names or values. Because of this same
flexibility, try not to over-use them or you will lose some of the benefits of

REST’s standardization. For instance, the following are examples of not-so-
optimal implementations:

POST /order?action=delete

POST /order?action=getMembershipAndOrder

Query parameters should extend the tools given by HTTP, not replace them.

Naming resources

Resources are at the center and front of the REST API design. Naming
resources and their endpoints is a critical part of designing APIs.

29 ¢

Resources should ideally be a single noun like “order”, “membership”, or
“product”. As we discussed earlier, resource names should not include
verbs like “delete”, “create”, or “find”, otherwise you would be defining
RESTful endpoints more suitable for web-based RPC.

Following an object-oriented perspective, resources can be seen as classes;
blueprints that can have multiple instances. To identify and retrieve specific
instances, you can attach an identifier to the URI, as shown here:
/membership/23
/order/123124

Keep in mind that these identifiers need to be encoded in the URL and
clients will use these URLs to access the resources, so exceptionally long
and complex identifiers might reduce the usability of your API.

Singular versus plural

A common question when naming resources and their URIs is: Should you
use singular or plural when naming your resources? Should it be /order or
/orders? The answer is determined directly by the type of actions you will
perform with the resource and the level of expressiveness you want to
define.

For instance, GET /orders has a different intent than GET /order. The first
retrieves a list of orders while the second makes no sense if the first one
exists. However, DELETE /orders/123 may also make no sense, as /orders
assumes it works with collections, not specific instances.

Instead of having to support both singular and plural endpoints, many
developer teams choose to adopt a single endpoint for most of the actions.

It’s a chosen trade-off that brings simplicity without losing much
expressiveness.

You can choose to use singular nouns for naming all your resources, as in
the following example:

GET /order -> fetch a collection of orders

GET /order/123124 -> fetch a single order

Relationships

Resources can be related to each, and we can design our API to express
these relationships. Looking back to our orders example, multiple orders
can be assigned to a specific membership.

This relationship should first be expressed in the model of the order
resource itself:

{

membership: ’

A e

}

This follows a pattern similar to creating 1:N relationships in SQL entities.
The child model contains a reference to a specific instance of the parent
resource, which can then be used to retrieve the parent’s data.

We can name our resource’s URIs to also express this relationship by
nesting the child entity into the parent’s URI:

/membership/23

/membership/23/order/123124

Notice how the URI makes explicit the relationship between both entities.
You cannot retrieve an order that is not linked to a membership. On the
downside, in addition to the order ID, you need to know an order’s
membership ID in order to retrieve an order; that might not always be
possible or optimal.

Actually, there are cases where relationships can be too complex to express
using a single URI; think of resources which are deeply nested. In those

cases, it’s better to have separate, specific URIs for each resource and
express the relationship only using the content of the resource’s model:

l.

2. Result:

3.

4 order id: 123124
5. membership: 23
6.

7.

While this approach might provide less context to consumers, it’s a good
trade-off to avoid having really long and complex URIs.

As seen 1n these past couple sections, REST conventions are there to make
your life easier, not the opposite. It’s important to be flexible enough to
know when a good practice creates more problems than the ones it fixes,
and it should be dropped.

Versioning

As flexible as a REST API can be, there will be a moment when it needs to
evolve and make changes which can break the contract we have with
existing consumers. Since breaking contracts is one of the worst things you
can do with an API, we need to introduce breaking changes through
versioning.

The most common way of versioning REST API is by adding the version
information in the URI, like /v2/order/123124. If a new version of the API
needs to be created, it’s published to a new URI starting in /v3/, while
keeping deployed an instance of the previous version v2. In that way, clients
which are using the resources in /v2/ will still have access to the previous
version of the API, while at the same time clients who migrate to v3 can
access the newer version.

The downside of this approach is that you have to create a whole branch of
the API to support a new version: there is no way to upgrade only the
resources which broke the contract. Most of the time, introducing new
versions requires clients to change the URI in all instances of their code

base, as there is no easy way to integrate new with older versions. Also,
URIs keep getting long and complex.

The second approach is to introduce a custom header for clients to indicate
the API which version they can support:

1.

2.
3. 200

4. version: 2.0

The advantage of this approach over adding a version to the URI is that our
URIs are clean. Clients will always make request to the same URIs.

Once clients upgrade their code to support all breaking changes, they can
start sending a different value in the header. This also means that, resources
which don’t need to be moved to a new version because weren’t changed
don’t need to be exposed in a new URI. All they have to do is return their
latest version if the requested version is equal or larger:

l.

2.

3. > curl -H “Accept-Version:
2.0” http:

4.

5.200 OK

6. version: 1.0

Requesting specific versions through custom headers allows clients a fine-
grained control over each request’s version, and gives API designers the
capability of only having to support old versions for resources which have
changed, instead of the whole API.

On the downside, using custom headers is a slightly more complex
approach and it requires better documentation for clients to know how it
works.

Caching

REST takes advantage of HTTP’s cache capabilities. Since GET requests are
idempotent and are supposed to only fetch data, they are cacheable by
default. posT requests can be cached but the server has to explicitly tell the
client through response headers. Other requests like DELETE or put, while
they are idempotent, they are supposed to mutate data in the server and their
responses should not be cached.

All the caching techniques from HTTP apply out-of-the box to REST (as
long as we’re not doing something weird, like making every request a puT
request).

The server can indicate clients how to cache REST responses using multiple
HTTP response headers:

e Expires: This indicates the date in which the response will not be
valid anymore and the client will have to request it again. This date
can be in formatted in seconds, minutes, or days in the future. Until
then, the client can use the cached version.

e cCache-Control: This is a list of keys and values which describe how
the resource should be cached. The key max-age indicates how long
the resource should be cached. The value of the max-age overrides the
value of Expires.

e ETag: This is a string which identifies a specific version of a response.
As long as the content of a response doesn’t change, it will have the
same ETag value. If a resource expires in the client, it can send a small
validation request to the server to check whether the ETag still has the
same value. If the ETag hasn’t changed, the client can still use the
cached response.

Finding the right values for these headers depend completely on the
business logic and the average time it takes for each resource to update and
provide different responses for the same request. For resources whose
response doesn’t change often, you can set large values for max-age and
future dates for Expires.

Effective REST APlIs: HATEOAS

The greatest challenge of integrating two systems which may evolve at
different paces is the lack of clarity in the integration point. Without
flexibility baked into the design of an API, 1t’s destined to fail.

From the point of view of API design, flexibility means that the API allows
both the provider and consumers to change independently, without ever
having to depend on each the other to make changes to keep growing. If a
consumer needs to wait for a producer to implement a new specific action
or resources, many times that’s a sign that the API is not flexible.

The question of how to keep APIs flexible is independent of the technology
you use. You can use SOAP services and still find ways to keep the API
flexible. Flexibility can be defined with two concepts: composability and
discoverability.

We discussed discoverability earlier. It’s the capability of consumers to
figure out exactly what can be done with the API without having to heavily
rely on documentation or an external third party providing usage guidance.
APIs should be built so clients can explore them as they use them.

Composability means that the provider exposes enough resources that the
consumer can combine and build their own high-level actions without
having to wait for the producer to expose that action itself.

Imagine you design an API to create configurations of cars for a carmaker.
You can expose resources for /truck, /sedan or /suv; but if a new car
category needs to be supported, the consumer would have to wait for the
API designer to expose a new resource for that. However, if the API
exposes resources at a slightly lower level like /wheels, /chasis, or
/steering-wheel, the consumer can build almost any type of car they need
to. Just be careful not to go to a level of abstraction that is too low, or the
API will get too complex and unusable.

Inside the REST methodology, the ultimate way to reach both
discoverability and composability is through HATEOAS.

Hypermedia as the Engine of Application State (HATEOAS) 1s a REST-
based architecture in which clients discover actions related to a resource by
reading metadata returned along the resource’s content.

On websites, users navigate from one web page to another by using links
contained in the body of those pages. In a HATEOAS-based API,

consumers navigate through resources using URI references included in the
response metadata.

Common ways of to implement HATEOAS are HAL, JSON-LD, and
Collection+JSON. Hypertext Application Language (HAL) adds extra
metadata in an attribute _1inks to the resource model. That attribute
contains links to all the related resources. For instance, the model for our
order resource can have the following structure:

1. {

2. : 123124,

3. .. // order data

4.

5. ~links: {

6. self: { href: b,

7. parent: { : b
8. next: { : ,

9. find: { : , : true)}
10. }

11.
12.)

Notice how the metadata attribute _1inks allows clients to know that, in
addition to the resource order which they are currently interacting with,
there are other instances of orders which are related. There is also a
reference to the membership of which this order is part, and a template for
clients to find more orders.

Figure 3.4 shows how a graph or network is created by the links added to
each resource response:

{ {
id: =23, id: =16"

rumy: “membershpl”, name: “membarshpi”,
i:nhj. { .|In|'i5 {
salf; { hral: “Imembership23" }, self. { hral: “fmambenship/ 167),
! I
1
Membership = Membership
f [
J'I// /
FAN : i
parent ™
.. parent parent
{ { {
e P - *123138°, id: *123176°,
fems: [.-.). ems: [...). ibems:; [...).
._III'Iks { _.||nks { _.||ran.s {
sall: | hred: “orden/123124°), next salf: { hrat: “lordee123138°), next salf: | el “lorder 123176 §,
parent: | href: “fmembershin23"), | - panent: { hrel: “membershipn23°), | - parent: { hral: “fmémbenthip/ 167),
naxt: { href: “lorder 123138 }°, naxt: { href. “order 123176 |5, next: | hrof: “lorder 123176 |7,
} I' 1
} I }
Order Order : Order

y y | 4

Figure 3.4: A network of links using HAL

HATEOAS is the pinnacle of REST APIs, and in practice very few REST
APIs fully implement it. Many teams find that the effort required to enable
HATEOAS is not worth the benefits it might bring to their specific business
cases, and that’s fine.

But, there are cases where HATEOAS can become incredibly helpful, like
the cases of APIs built to be publicly exposed and directly accessed by
external consumers. We will discuss these cases further in this chapter.

Building APIs with GraphQL

The flexibility provided by the composability of REST APIs also has its
own challenges. In order to compose a semi-complex action, consumers
need to make multiple requests to different endpoints. For instance, if you
want to fetch the data of a membership and all its orders, you might have to
do at least two requests; one for fetching the membership resource and one
for batch fetching the list of orders related to it.

Having to make multiple requests for a single action has an impact in
performance, especially in low-end mobile devices with expensive data
rates and limited Internet bandwidth.

Using REST, you can support retrieving both the membership and order
data in a single request by returning the membership data along with the list
of all orders in GET \membership\23\order. However, this could force the
consumers to always fetch the membership data, even if they don’t need it.
We can add a query parameter to opt-in to the extra data just in the cases
that need it.

Unfortunately, supporting specific cases where it’s critical to make as few
requests as possible reduces a lot of the flexibility and expressiveness that
REST provides.

Developers at Facebook, pressed to find a way to expose APIs that still
allowed a high level of flexibility without forcing consumers to make too
many requests, came out with GraphQL.

GraphQL is a framework