
[1]

Getting Started with
NativeScript

Explore the possibility of building truly native,
cross-platform mobile applications using your
JavaScript skill—NativeScript!

Nathanael J. Anderson

BIRMINGHAM - MUMBAI

Getting Started with NativeScript

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016

Production reference: 1220116

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-865-6

www.packtpub.com

www.packtpub.com

Credits

Author
Nathanael J. Anderson

Reviewer
TJ VanToll

Commissioning Editor
Veena Pagare

Acquisition Editor
Prachi Bisht

Content Development Editor
Mehvash Fatima

Technical Editor
Abhishek R. Kotian

Copy Editor
Lauren Harkins

Project Coordinator
Shipra Chawhan

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

Foreword

Are you tired of writing the same mobile app from scratch for iOS, Android and
Windows? Yes? Then, you should be glad you found NativeScript!

Owing to the mobile platforms diversification, it is clear that to build a successful
mobile application, you should make it available on all of the major mobile
marketplaces, namely, Apple AppStore, Google PlayStore, and Microsoft Windows
Store. This created a need for companies and developers to publish native apps
that are available on all three major mobile stores without compromising on the
native user experience. The problem, however, is that these three operating systems
are very different and companies need to implement three different applications
for these stores. Essentially, your company has to write and maintain multiple
implementations for the same problem. Teams write (and have to support) the
same apps multiple times. There is a good chance that bugs reported on one
platform also exist on the others but remain unnoticed. Apps that are meant to
behave identically on all platforms may exhibit subtle differences due to their
differing implementations. Also, shipping new features at the same time on all
platforms is difficult. This is neither optimal, nor very productive and requires a
significant investment to gain the knowledge of three different operating systems,
languages, IDEs, APIs, and marketplaces. There has got to be a better way. Enter
NativeScript—a framework using the native platform APIs, rendering and layout
capabilities to deliver ultimate user experience and will allow developers to reuse
their coding skills, eliminating the need to learn new languages and IDEs.

The NativeScript framework enables developers to use the pure JavaScript language
to build native mobile applications running on all major mobile platforms—Apple
iOS, Google Android, and Windows Universal. The application's UI stack is built
on the native platform rendering and layout engine using native UI components,
and because of that, no compromises with the User Experience of the applications
are made. It is also worth mentioning that a full native API access is provided
using JavaScript.

This book has everything you need to get started with NativeScript. It starts with
the fundamentals, such as the project structure, the command-line interface, how
to use basic UI element, how to use third-party native components, and finally,
how to target different platforms with NativeScript.

The author, Nathanael Anderson, is one of the faces of NativeScript. He has a deep
understanding of how the framework operates from inside out and is the best person
who can teach you how to use it.

"I'm confident that by reading this book, you will be able to quickly get into
NativeScript and start building your next cross-platform native mobile
application."

Valio Stoychev

Product Manager NativeScript at Telerik

About the Author

Nathanael J. Anderson has been developing software for over 20 years in a wide
range of industries, including areas of games, time management, imaging, service,
printing, accounting, land management, security, web, and even (believe it or not)
some successful government projects. He is currently a contract developer for master
technology and can create a solution for several types of applications (native, web,
mobile, and hybrid) running on any operating system.

As a senior developer engineer, he can work, tune, and secure everything from
your backend servers to the final destination of the data on your desktop or
mobile devices. By understanding the entire infrastructure, including the real and
virtualized hardware, he can completely eliminate different types of issues in all
parts of a framework.

Currently, he has multiple highly rated cross-platform plugins for NativeScript,
and he works heavily in the NativeScript community by providing things such as
bleeding edge build servers to build knightly code. He has also provided multiple
patches and features to the main NativeScript project.

About the Reviewer

TJ VanToll is a senior developer advocate for Telerik, a jQuery team member,
and the author of jQuery UI in Action. He has over a decade of web development
experience—specializing in performance and the mobile Web. He speaks about
his research and experiences at conferences around the world and has written for
publications such as Smashing Magazine, HTML5 Rocks, and MSDN Magazine. You
can follow him on Twitter at @tjvantoll and on GitHub at tjvantoll.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface vii
Chapter 1: Introduction to NativeScript 1

NativeScript 1
Telerik's NativeScript 2
Other competitors 2
NativeScript uniqueness 2
NativeScript is easy 3

NativeScript and TypeScript 4
What is TypeScript? 4
TypeScript's use in NativeScript 4
Choosing a development language 5
Common modules 5

Installing NativeScript 6
Prerequisites 6

node.js 6
iOS 6
Android 7

Installation 7
Installation help 8

The NativeScript command line 8
NativeScript commands 8

Creating your first application 10
Creating the application in easy steps 11
Running the app 12

Summary 13
Chapter 2: The Project Structure 15

Project directory overview 15
The root folder 17
The app folder 18

Table of Contents

[ii]

The lib folder 18
The hooks folder 18
The node_modules folder 19

The tns-core-modules folder 19
The platforms folder 20

The platforms/android folder 20
The platforms/iOS folder 22

The app folder 24
The .gradle folder 24
The App_Resources folder 24
The fonts folder 25
The app folder files 25

The package.json file 25
License 25
App.js 26

App.css 27
Application page 27

The main-page.js file 27
The main-page.css file 28
The main-page.xml file 28
The main-view-model.js file 29

Foundational components 31
Application component 31
Frame component 32
Page component 32

Creating a second page 33
Creating additional files and pages 34

Creating settings.js 34
Navigating to another page 35
Running the application 36
Viewing our screen 36

Summary 37
Chapter 3: Declarative UI, Styling, and Events 39

Declarative UI 39
XML parser 40
Page, StackLayout, label, and more 41

<Page ...> node 41
<StackLayout ...> node 42
<Label ...> node 42
<Button ...> node 45
Second <Label...> node 46

Declarative UI and components 46
Visual components 47

Table of Contents

[iii]

Using the Declarative UI for our settings page 47
Our settings.xml file 47

Binding and event system 49
Event system 50
Binding 51
Styling the UI 52

What is CSS? 52
Why use CSS? 53
How to use CSS 53
Configuring your CSS Rules 54
Existing CSS properties 56
Exploring app.css 58

Trying CSS out and styling our application 60
Styling on your own 61

Summary 62
Chapter 4: Building a Featured Application 63

Layouts 63
StackLayout 64
WrapLayout 64
AbsoluteLayout 65
DockLayout 66
GridLayout 66

Building our featured application 68
Nonvisual components 69
Dialogs 72

Alert dialog 73
Confirm dialog 73
Prompt dialog 74
Login dialog 74
Action dialog 75

Promises 75
The settings screen Declarative UI 76

GridLayouts 76
Building the main screen 79

JavaScript code 79
Declarative UI 82

Main page Declarative UI 83
Main page body 83
ScrollViews 84
More about bindings 84
Repeaters 84
Main-body footer 85

Table of Contents

[iv]

The main-page.css file 87
Application CSS 89

Fonts 90
Icons 91
Communication with the server 91
Trying out our application 95

The server 95
Setting up your own server 96

Trying crossCommunicator out. 97
Summary 98

Chapter 5: Installing Third-Party Components 99
Places to find third-party components 99

The Telerik plugin site 100
npmjs.com 100
The NativeScript unofficial plugin list 100

How to install a third-party plugin component 100
Installing the vibration plugin 101
Installing the webSockets plugin 101
Installing the Telerik SideDrawer plugin 101

Using third-party components 102
Using the vibration plugin 102
Using Websockets 102
Using Telerik's side drawer 108
Easily using the components 110
Useful third-party components 110

Summary 110
Chapter 6: Platform Differences 111

Android and iOS differences 111
The soft keyboard 112
The Page.loaded event 112

Code differences 113
Platform classes 114
Declarative UI 115

Declarative UI properties 116
Declarative UI platform qualifiers 116

Platform- and device-specific files 117

Table of Contents

[v]

Screen size differences 117
Fonts 118
Our own custom resource folders 118
Compiled application resources on iOS 119
Compiled application resources on Android 121

Device differences 123
Summary 124

Chapter 7: Testing and Deploying Your App 125
Testing your application 126
Test frameworks 126
Local testing of your code 128
Unit testing on the device 131

Installing the test framework 132
Writing tests 132
Running tests 133

Testing your app on a device or emulator 134
Understanding the call stack 136

Android call stack 136
iOS call stack 138

Debugging your application 139
Publishing your application 140

Publishing to iOS 141
Summary 141

Index 143

[vii]

Preface
Welcome to Getting Started with NativeScript. In this book, we are going to go on
an awesome journey of building cross-platform applications in JavaScript. We will
cover everything from how NativeScript works, to how to test, debug, and finally
deploy your application. Over the course of this book, we are going to explore how
to build a full-featured, cross-platform messaging platform. The application will
work the same on all NativeScript-supported platforms. With your ability to develop
in JavaScript and the insights provided in this book, you will be releasing your own
cool applications in no time.

What this book covers
Chapter 1, Introduction to NativeScript, will teach you about NativeScript and how to
install and build your first NativeScript application.

Chapter 2, The Project Structure, provides an overview of what all the different files
and folders are used for, and we will build and switch to a second screen for our
application here.

Chapter 3, Declarative UI, Styling, and Events, works through how to create screens
using the Declarative UI, style them and then how to create and respond to events.

Chapter 4, Building a Featured Application, helps you to actually sit down and
build a full-featured, cross-device messaging application using just the standard
NativeScript components.

Chapter 5, Installing Third-Party Components, delves into how to install several
different types of third-party components to enhance our cool communication
application.

Preface

[viii]

Chapter 6, Platform Differences, looks at how to deal with the differences between iOS
and Android and the differences in the actual physical characteristics of the devices
even on the same platform.

Chapter 7, Testing and Deploying Your App, looks at how to use several different types
of testing frameworks, how to debug your application, and finally, how to actually
deploy your application.

What you need for this book
NativeScript is an open source project; as such, it uses technologies that can be freely
downloaded from the Internet. You need to download and install a recent version
of Node from http://nodejs.org. You also need a text editor so that you can edit
your source code. If you are developing for Android, you need to download and
install Java 7, Gradle 2.3, and the Android SDK. For iOS, you need to install Xcode
6.2 or a later version.

Who this book is for
If you are already a JavaScript developer and you want to finally build native
cross-platform applications for iOS and Android using your skills, then this book
is just for you!

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "which a require statement would load
into your code."

A block of code is set as follows:

{
 "name": "tns-template-hello-world",
 "main": "app.js",
 "version": "1.5.0",
 ... more json documentation fields...
}

http://nodejs.org

Preface

[ix]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

{
 "nativescript": {
 "id": "org.nativescript.crossCommunicator",
 "tns-android": {
 "version": "1.5.0"
 },

Any command-line input is written as follows:

nativescript run ios --emulator

New terms and important words are shown in bold or italics. Words that you see
on the screen, in menus or dialog boxes for example, appear in the text like this:
"You can probably guess that the Label will still say Tap the button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[x]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

[1]

Introduction to NativeScript
In this chapter, we are going to introduce you to Telerik's NativeScript, and discuss
how NativeScript is totally unique in the cross-platform mobile device market, and
how it is radically revolutionary for mobile JavaScript development. We will also
walk you through the prerequisites of how to install the NativeScript command-
line tool. Once the NativeScript tool is installed, we will walk you through the basic
usage of the tool and briefly describe the most common parameters. Finally, we wrap
up the chapter by creating and running our first NativeScript application.

In this chapter, we will be covering the following topics:

• What is NativeScript?
• NativeScript and TypeScript
• Common modules
• Installing NativeScript
• The NativeScript command line
• Creating your first application

NativeScript
If you are looking at this book, maybe you want to know why you should use
NativeScript and what sets it apart from the crowded competition. Why shouldn't
you use any of the other cross-platform tools? Let us dig in, and I'll explain why
NativeScript is the answer to the best way of executing cross-platform mobile
development.

Introduction to NativeScript

[2]

Telerik's NativeScript
Telerik's NativeScript is a fairly new open source development system for creating
cross-platform mobile applications almost entirely in JavaScript, with some optional
CSS and XML to simplify developing the display layout. You can find the main
location of each of the different projects that make up NativeScript at https://
github.com/NativeScript. Even though it is new to the market, it is already fully
compatible on Apple's iOS and Google's Android. In addition, Microsoft's Windows
10 Mobile is currently in development by Telerik, and others are working on Firefox
Mobile. NativeScript uses the V8 engine (as used by Google Chrome and node.js) on
Android and Apple's JavaScriptCore engine on iOS devices.

Other competitors
Now, there are several other competing JavaScript development systems for
mobile devices. Some of these competitors have been established for a while. Other
development systems may have large companies working on them. But neither of
those will make any of the other tools the best choice. What makes NativeScript
stand out from the crowd of other JavaScript environments is its unique design.
Every other JavaScript environment requires a special bridge, or a compiled
extension of some sort, which basically exposes some part of the native functionality
of the host operating system to your JavaScript code. A lot of them are actually just
web browsers wrapped in an application shell, so all the work you do is actually in
a browser. If you decide you want Bluetooth on your iOS phone in one of the other
products, you have to find someone who has made the iOS Bluetooth bridge or
extension module in some other non-JavaScript language. In a lot of cases, you will
even have to compile the module, and then you will still be hoping that the module
has all the functionality you need.

NativeScript uniqueness
NativeScript is unique because it allows you to access the native elements of the host
platform via JavaScript. In NativeScript, you can still see if someone has written a
convenient JavaScript library to access the Bluetooth API. If so, since you understand
JavaScript, you can easily make any changes you need. If not, then you can make
your own JavaScript module to access all the host platforms of Bluetooth API.
NativeScript is not a wrapper around a web view; it literally allows your JavaScript
to work directly with the host platform APIs.

https://github.com/NativeScript
https://github.com/NativeScript

Chapter 1

[3]

For example, to find out if a file exists, we can just call the native Android method in
JavaScript:

var javaFile = new java.io.File('/some/file/name.ext');
var exists = javaFile.exists();

Or the native iOS Objective C code in JavaScript:

var fileManager = NSFileManager.defaultManager();
var exists = fileManager.fileExistsAtPath('/some/file/name.ext');

Since NativeScript allows you access to the full operating system libraries and third-
party libraries from your JavaScript code, you do not need to wait for someone else
to create a wrapper or bridge to talk to any part of any iOS or Android API. You can
now fully use any of the APIs as a first-class citizen, which even includes using any
new APIs when they are first released.

NativeScript allows you to be a fully first-class citizen; you have FULL
access to the devices' entire released API from JavaScript. So anything
that you can do in Android Java or iOS Objective C, you can now do
directly in JavaScript.

NativeScript is easy
Now, before you get worried about having to know both iOS and Android to make
your application, NativeScript has that covered. To simplify things, NativeScript
already has a wide number of components, or modules, that wrap the most common
things a developer will need, which are called the NativeScript common core
modules. So, instead of having to write any Android or iOS specific code like I did
above to see if a file exists, you can just write the following code:

var fs = require('file-system');
var exists = fs.File.exists(path);

The NativeScript filesystem module has each of the native platforms' API wrapped
up so all you have to do is write to a common interface. But when you need to do
something outside of the built-in modules and components, NativeScript is the only
environment that allows you to easily have full access to everything the device offers
right from JavaScript.

Introduction to NativeScript

[4]

NativeScript and TypeScript
We are going to explain how parts of NativeScript are developed in TypeScript and
what that means for you in terms of developing your awesome application using
NativeScript.

What is TypeScript?
In 2012, Microsoft released an interesting language called TypeScript. This language
is fully open sourced because the company felt it was something the JavaScript
community needed. It is, in a nutshell, a superset of JavaScript with types and
several other additional language features. If you write any code in TypeScript,
you then have to use the TypeScript transpiler to convert the code from TypeScript
back into JavaScript. One of the primary reasons people use TypeScript over regular
JavaScript is that TypeScript offers the ability to do static type checking at the point it
converts the code to JavaScript. So, you don't have a runtime hit, and you don't have
to do a lot of runtime parameter checks if the code is all in TypeScript. This feature
alone eliminates a type of bug that is very easy to access in JavaScript. In addition to
static typing, it has several class/object type features that make inheritance and class
definition considerably simpler and safer.

Types possess the ability to add markup to code denoting the type
expected:

private validateMe(name: string, password: string):
boolean { };

The string and boolean are declarations telling what the exact
parameter types and expected return type are. This allows the transpiler
to verify that the code matches the static types during the building stage.
Transpiler is a shortened term from translation compiler used to mean the
code is converted from one language to another language. So, in this case,
we are translating the code from TypeScript into JavaScript.

TypeScript's use in NativeScript
The NativeScript command-line utility, common modules, and components are
all written in TypeScript. TypeScript is then transpiled to JavaScript before it is
distributed for all us developers to download, install, and use. So, unless you are
actually pulling the open source code from the NativeScript repositories, then all the
code you will see is in JavaScript.

Chapter 1

[5]

Fortunately for us, the majority of the differences between TypeScript and JavaScript
are fairly minor, so the code transpiled to JavaScript in almost all cases is very close
to the original TypeScript, which still makes it very readable.

Telerik just released a brand new module in v1.5.0 that will allow
TypeScript to now be a first-class citizen in the development of
your application. If you don't use this module, then you have to
manually transpile all your TypeScript code each time before you
build an application. After you execute a nativescript install
typescript command, when the NativeScript command does anything
with your code, it will automatically transpile all your TypeScript code
first. This makes your development a much more streamlined process.

Choosing a development language
Since the final output of all the code must be JavaScript, you are able to write any of
your applications or modules in TypeScript, CoffeeScript, or any other language that
can be transpiled into JavaScript. This book is going to focus on doing everything in
JavaScript as this is what the final code output must be for all the devices, and it is
the common language that binds everything together.

Common modules
Common modules were created to solve the issue of JavaScript files polluting the
global namespace with variables and functions that another JavaScript file could
easily overwrite accidently. JavaScript allows you to redeclare or monkey patch
your functions on a whim, which is part of what makes it so powerful. However,
with that much power comes the ability to very easily shoot yourself in both feet
simultaneously. Then, you are left scratching your head why you just lost both
feet. To attempt to solve the issue of one included file function or variable being
overwritten by another include file, developers came up with several techniques that
evolved into the common module formats we use today. There are three standards
available for you to use: the CommonJS module format, which is what node.js
popularized; the AMD module format, which was designed for the asynchronous
resolution of JavaScript files in a browser environment; and the brand new
ECMAscript 6 module format, which, when finally released, should become the de
facto module format. All three of them wrap the source code so that none of the code
in a module by default can interfere with the global namespace. NativeScript follows
the CommonJS module format where you use exports and module.exports to tell
what parts of the code in the module you want to expose to outside parties. When
you see var coolModule = require('cool-module');, this is the syntax that the
CommonJS module format uses to load a module.

Introduction to NativeScript

[6]

Installing NativeScript
We are going to cover what you'll need for installation and development. Then,
we will discuss how to install the NativeScript command, which you will use for
anything relating to your NativeScript project.

Prerequisites
To get started on our journey of using NativeScript, we first must have several tools
installed. The primary tool you will use for virtually everything is the nativescript
command, or you can alternatively use the shorter alias of tns (short for Telerik
NativeScript).

node.js
For the nativescript command to be installed and to make it work, you must first
install node.js, which can be downloaded and installed from https://nodejs.
org/. The nativescript command is also written in TypeScript and already pre-
converted to JavaScript before you even download it. It uses node.js and several
other common modules to perform all its work.

iOS
If you are planning on distributing your app on any iOS devices, you will need to
have access to an Apple Macintosh platform. This is a requirement by Apple as they
only allow you to compile and upload the app to the app store from a Macintosh.
The Macintosh must have the Xcode and Xcode command-line tools installed. It is
also highly recommended that you have an iPhone 4s or better to test at least the
final application before you distribute it. The iOS emulator is not very accurate
and because it gives you an idea of how your app will look, an actual device will
accurately show you what your customers will see. The specific install instructions
for iOS can be found at http://docs.nativescript.org/setup/ns-cli-setup/
ns-setup-os-x.html.

https://nodejs.org/
https://nodejs.org/
http://docs.nativescript.org/setup/ns-cli-setup/ns-setup-os-x.html
http://docs.nativescript.org/setup/ns-cli-setup/ns-setup-os-x.html

Chapter 1

[7]

Android
Android is a lot easier because you can execute development for Android on Linux,
OSX, and Windows. For Android, you need to install Java JDK and then the Android
SDK and tools. I also highly recommend that you install an optional third-party
Android emulator rather than use the stock Android emulator. The third-party
emulators are considerably faster than both the stock Android emulator and the add-
on Intel HAXM emulator. The stock emulator and Intel HAXM can be downloaded
via the Android SDK Manager. The instructions on the NativeScript site can walk
you through installing all the tools that you will need for building and testing your
application. The specific instructions for each of the platforms are located at http://
docs.nativescript.org/setup/quick-setup#the-nativescript-cli.

Installation
Once you have node.js installed, you just need to do a simple npm install –g
nativescript at a terminal shell (or known on Windows as a command prompt
window). And then npm will download and install the required NativeScript code
and command-line tool. It will install it globally so that it can be used from any
project you are working on.

With the command path on Linux and Macintosh, the global commands
are normally placed in /usr/local/bin, which is typically already in
your path, so the nativescript command should work right away.
On Windows, unfortunately, you might have to add the path where npm
installs the program globally. Type nativescript and see if it runs. If
it fails to run, then you need to add npm's global directory to your path.
Type npm config get prefix to get the current global directory.
Type systempropertiesadvanced , then click the Environment
Variables button, then click on PATH, and finally, click the Edit button.
Then, you can type a semicolon and add in the directory path to the
all the npm global commands like the NativeScript command. So, your
path might look something like this: C:\windows;c:\windows\
system;c:\program files (x86)\nodejs.

Once the NativeScript command and required support tools are installed, you are all
ready to begin developing NativeScript applications.

http://docs.nativescript.org/setup/quick-setup#the-nativescript-cli
http://docs.nativescript.org/setup/quick-setup#the-nativescript-cli

Introduction to NativeScript

[8]

Installation help
Sometimes, getting NativeScript installed properly can be difficult because of all
the differences between computers. Here are a couple places you can go to get help
if you need it: https://groups.google.com/forum/#!forum/nativescript and
https://plus.google.com/communities/117408587889337015711.

The NativeScript command line
Now, before we get to the creating a project part, let us have an overview of the
commands available from the new nativescript command you just installed. If you
forget any of these, you can easily type nativescript alone without any parameters
to see a help screen at a console window, or type nativescript /? for a help screen
in your browser.

NativeScript commands
These are just some of the most commonly used valid commands for the
nativescript command. Several of these we will be covering as we progress in the
book.

Command line Description
nativescript --version This returns the version of the

nativescript command. If you are
running an older version, then you can
use npm to upgrade your nativescript
command like this: npm install -g
nativescript.

nativescript create <your project
name>

This creates a brand new project.

nativescript platform add
<platform>

This adds a target platform to your
project.

nativescript platform list This shows you what platforms you are
currently targeting.

https://groups.google.com/forum/#!forum/nativescript
https://plus.google.com/communities/117408587889337015711

Chapter 1

[9]

Command line Description
nativescript platform remove
<platform>

This command is normally not needed,
but if you are messing with the platform
directory and totally mess up your
platform, you can remove and then add
it back. Please note this deletes the entire
platform directory, so if you have any
specific customizations to your Android
manifest or iOS Xcode project file, you
should back it up before running the
remove command.

nativescript platform update
<platform>

This is actually a pretty important
command. NativeScript is still a very
active project under a lot of development.
This command upgrades your platform
code to the latest version, which typically
eliminates bugs and adds lots of new
features. Please note this should also be
done with an upgrade of the common
JavaScript libraries as most of the time,
they also are typically in sync with each
other.

nativescript build <platform> This builds the application for that
platform.

nativescript deploy <platform> This builds and deploys the application
to a physical or virtual device for that
platform.

nativescript emulate <platform> This builds and deploys the application to
an emulator.

nativescript run <platform> This builds, deploys, and starts the
application on a physical device or an
emulator. This is the command you will
use the majority of the time to run your
application and check out the changes.

nativescript debug <platform> This builds, deploys, and then starts the
application on a physical device or an
emulator in debug mode. This is probably
the second most used command.

nativescript plugin add <plugin> This allows you to add a third-party
plugin or component. These plugins
typically include JavaScript based code,
but occasionally, they might also contain
an actual compiled Java or ObjectiveC
library.

Introduction to NativeScript

[10]

Command line Description
nativescript livesync - -watch This allows you to have the

nativescript command watch for
changes and automatically push them
to the device. This is probably the third
most used command if you are not using
a better third-party LiveSync system. We
call it LiveSync because it automatically
syncs all your changes directly to the
device in real time, without you having
to rebuild the application. This speeds
up your development of an application
drastically.

nativescript doctor This allows you to run some diagnostic
checks on your environment if the
nativescript command does not
appear to be working.

nativescript install This will (re)install any dependencies
listed in your package.json file. The
package.json file is typically modified
by the plugin or library add function,
so this is used typically to reinstall the
plugins or libraries in the event you add a
new platform or reinstall one.

nativescript test [init |
<platform>]

This allows you to create or run any
tests for your application. Using init
will initialize the test framework for
the application. Then, you just use the
platform to run the tests on that platform.

Now that we have described some of the commands, let's use them to create your
first mobile app via the nativescript command tool.

Creating your first application
I am going to walk you through how to create an application as it currently requires
a couple steps that you need to do from a terminal shell. Then, we will show you
how it looks.

Chapter 1

[11]

Creating the application in easy steps
Creating a project is actually a fairly simple process; we are going to start by creating
the application we will develop throughout this book.

1. Make sure you are at a terminal shell and then type:
nativescript create crossCommunicator

2. This will create crossCommunicator as a subdirectory of the current
directory you are running the nativescript command in. This new project
directory will have all the required files for developing your project.

3. Next, you will need to switch to that new crossCommunicator directory that
it created for you by typing:
cd crossCommunicator

4. Then, type:
nativescript platform add android

And/or:

nativescript platform add ios

5. To add each of the target environment(s), you will be compiling your app
from this machine:

If everything worked properly, you should see something like the preceding image
results.

Introduction to NativeScript

[12]

Now, I personally do all my development on the Windows platform using JetBrain's
wonderful cross-platform PHPStorm development environment. You are free to
use any JavaScript editor you are comfortable with. Since I am using the Windows
platform, I do the majority of my testing and debugging on the Android platform
and emulator. The Android emulator is basically a full Android in your computer,
so it behaves like an actual device. However, since I am also targeting iOS, every so
often I also copy or sync the code from my Windows app folder to a Macintosh and
then verify that everything looks good and works as expected on the iOS emulator
and eventually an iOS device. The very first time when I copy my code over to a
Macintosh, I use the nativescript platform add ios command as I need to add
the iOS target on the Macintosh.

First time requirements
The very first time you create a project or add a platform, you do need an
active Internet connection so the nativescript tool can download the
current version of the runtime and platform libraries that it uses. In any
future executions, it will first try to download the newest version, but if it
fails, it will then use the currently cached version.

Running the app
With those simple steps, NativeScript creates a framework for an application that
you can already run on your mobile device. Now, to run the project, we execute:

nativescript run android --emulator

Or:

nativescript run ios –-emulator

NativeScript will then copy your application to the emulator, automatically start it
up, and then you should see your first application running on the emulator screen
like this:

Chapter 1

[13]

Summary
We covered a lot in this chapter. You learned what NativeScript is and what makes
NativeScript unique among all the different JavaScript mobile development systems.
You also learned how to install NativeScript and explored a large number of
different command-line parameters you will use. And finally, you actually created
and ran a new project.

Now you have the tools you need installed, and most importantly, we now have
a running application. Let's dive into what makes the whole project tick. We will
explore all the different files and folders for your project and gain an understanding
of how each file is used, and finally, we will enhance the default application in
Chapter 2, The Project Structure.

[15]

The Project Structure
In this chapter, I am going to show you how to navigate your new project and its full
structure. I will explain each of the files that are automatically created and where you
create your own files. Then, we will proceed to gain a deeper understanding of some
of the base components of your application, and finally, learn how to change screens.

In this chapter, we will be covering the following topics:

• Project directory overview
• App directory overview
• NativeScript common core files
• Your application files
• An application page
• Foundational components
• Creating a second page
• Navigating between screens

Project directory overview
By running the nativescript create crossCommunicator command in the
previous chapter, it created a nice structure of files and folders for us to explore.

The Project Structure

[16]

If the NativeScript team has replaced the default project template since
this book was written, the actual source code as it existed at the time
of publishing is located in the book's source code repository found at
https://github.com/GettingStartedWithNativeScript/
Chapter_1. The Example_1 folder contains the entire default
template when this book was written. And you can clone it to your
hard drive by running the git clone https://github.com/
GettingStartedWithNativeScript/Chapter_1 command and
then proceeding to follow along inside the Example_1 folder.

First, we will do a high-level overview of the different folders and their purposes
and touch on any important files in those folders. Then, we will finish the overview
by going into depth with the App directory, which is where you will spend pretty
much all of your time when developing an application. To give you a good visual
overview, here is what the project hierarchy structure looks like:

https://github.com/GettingStartedWithNativeScript/Chapter_1
https://github.com/GettingStartedWithNativeScript/Chapter_1

Chapter 2

[17]

The root folder
In your Root folder, you will see only a couple directories, which we will describe
below, and a single file. This file, package.json, will look something like this:

{
 "nativescript": {
 "id": "org.nativescript.crossCommunicator",
 "tns-android": {
 "version": "1.5.0"
 },
 "tns-ios": {
 "version": "1.5.0"
 },
 },
 "dependencies": {
 "tns-core-modules": "1.5.0"
 }
}

This is the NativeScript master project configuration file for your entire application.
It basically outlines the basic information and all platform requirements of the
project. It will also be modified by the nativescript tool when you add and remove
any plugins or platforms. So, in the preceding package.json file, you can see I
have installed the Android (tns-android) and iOS (tns-ios) platforms (using the
nativescript platform add command), and they are both currently running at
version 1.5.0. The tns-core-modules dependency was added by the nativescript
command when we created the project, and it is the core module.

Changing the app ID
Maybe you want the app ID to be your company's name instead of the
default ID of org.nativescript.yourProjectName, There are two
ways to set the app ID. The first way is when you create the project, if
you execute a nativescript create myProjName --appid com.
myCompany.myProjName command, then this will automatically set the
ID value. The second way, if you forgot to run the create with a --appid
command, you can change this here. However, any time you change this,
you will also have to remove all installed platforms and then re-add the
platforms you are using. This must be done when each platform is added,
because it uses the configuration ID while building any of the platform
folders and any of the needed platform files.

The Project Structure

[18]

The app folder
This folder contains all your code and resource files; we will go more in depth on
these files in the next section as this is where you will be spending most of your time.
This is also the main folder you should put under source control as it should contain
all your application code and resources.

Source control. If you aren't using it, you really should be. Not only is it useful
as a backup system, but it allows you to have a history of all the changes in your
program. This ability comes in real handy when you change something and later
realize you broke your program. With source control, you can compare the changes
and revert only the part that broke. Another very useful feature is branching; you
can create a branch of your project while you are working on a large feature and
continue adding other features to your release version, then merge the branches
when you are done. Suffice it to say, source control is awesome! You will notice that
this book's source control is Git, but subversion is also an excellent option.

The lib folder
If your project requires it, then this folder is used during the build stage for
the Android target; the Android.jar, the android-support-v4.jar and the
nativescript.jar files, and any other added libraries are automatically copied into
this folder during a run or build of your application for the Android platform. You
can pretty much just ignore this folder since it is just used during building.

The hooks folder
This folder is created by the nativescript command if you install any additional
modules that are nativescript command enhancements. This folder will contain
the source code for the hooks so the nativescript command knows when and
what to run. A couple of popular hooks are the TypeScript and Protect hooks. The
TypeScript hook automatically compiles any TypeScript code into JavaScript before
the application is built. This eliminates you having to manually do this step, and
makes TypeScript a first-class citizen in the NativeScript ecosystem. The Protect
hook minimizes and encrypts all your JavaScript code before the application is built;
this gives you some piece of mind that your app won't just be literally copied.

Chapter 2

[19]

The node_modules folder
This folder is used to store the NativeScript common core library module and any
installed plugins. It is the folder where all master copies of the JavaScript source code
for all the installed plugins reside. Why do I say master copies? Because another
copy of the relevant source files is put into the platforms directory. The platform
copy is what the build system uses for the actual building of your app. If you
decide to change the platform copy and expect to see the changes, you will be quite
disappointed as the node_modules files are re-copied into the platforms folder
during a build.

In addition, if you want to look at how a plugin works, each plugin you install will
have a subfolder with its name inside the node_modules folder.

The reason this folder is called node_modules is because a very successful
project called node made JavaScript common modules very popular.
NativeScript uses node and node's package manager, npm, to do a lot of
its project management. By NativeScript using npm to handle its plugins
and core module, we then get the default node_modules folder.

The tns-core-modules folder
The tns-core-modules folder contains all the source code to the core common
NativeScript modules. These modules are the glue that allows you to write
common code that works on every platform. For example, if you execute a var
fs=require('file-system') command, your application will load the filesystem
JavaScript tns-core-modules | file-system | file-system.js file. If you look
in this folder, you will see an Android and iOS version of this file; they both have
the same interface that you will use, but they have the code to talk to the native
filesystem on their respective platforms. The proper JavaScript version will be
loaded automatically. As we progress through this book, we are going to go through
several of these modules and show you how to use them properly. But for now, this
is where all the common NativeScript modules reside if you need to find them. One
minor thing to keep in mind is that the tns-core-modules folder also contains its
own package.json file, which is what you can check to figure out the version of the
common core components you have installed in your application project.

The Project Structure

[20]

tns-core-modules and your own code
You should never put any of your own code in the tns-core-modules
folder. This folder should be left strictly for the actual distributed Telerik
NativeScript common core modules. This folder and everything in it
will be deleted and/or replaced any time you upgrade the NativeScript
common core components.

The platforms folder
This is where NativeScript puts all the specific platform code and libraries for each
target platform that are needed for compiling your app for that specific platform.
When you execute a nativescript platform add android command, you will see
a folder called Android inside the Platforms folder. Any platform you add will have
a subfolder with the same name inside the Platforms folder. You rarely have to
enter these folders as they are almost completely taken care of by the nativescript
command. However, there are several reasons you might have to work inside these
folders. So, we will explore these reasons for each of the specific platforms.

Removing and upgrading platforms
If you execute a nativescript platform remove platform
command, it fully deletes that specific platform folder and everything
in it. So, if you have made any changes to the AndroidManifest.xml
file or the iOS .xcodeproj file that you want to keep, you need to make
sure to make a backup copy of these files first. In addition, when you do a
platform upgrade, it also currently replaces your Xcode project files.

The platforms/android folder
One reason you might need to access the files in the Platforms folder is when
you need to add or change any of the Android application permissions or
any other application-wide change that needs to be made in the application's
AndroidManifest.xml file. The AndroidManifest.xml file resides in the
Platforms/Android/src/main folder. This is the only copy the build system uses.
When you need to open and edit this file, you should see something like this:

Chapter 2

[21]

As you can see in the stock NativeScript, the AndroidManifest.xml file already has
Internet permission on line 19, so we do not have to add this permission to our app
later when we start using the Internet to communicate.

Currently in the works is a future version of NativeScript that will
allow you to have the master copy of the AndroidManifest.xml file
in your App/App_Resources folder. Then, you can maintain pretty
much everything from inside your App folder. But, as it stands right
now, any changes to the manifest file must be done to the version inside
the Platforms/Android/src/main folder if you actually want them
to work.

One precaution is that when you install any plugins, you should look at the
AndroidManifest.xml file to verify that it didn't add any duplicate permissions. The
nativescript command does not currently have any checks in place to verify that
permissions are not duplicated. If you have any duplicate permissions, then the next
time you compile or run your application, it may fail to start. Hopefully, in a newer
version of NativeScript, this will be fixed so permissions are not duplicated, but in
the meantime, if your app fails to start on Android, check to verify you don't have
any duplicate permissions.

The Project Structure

[22]

Bad resource files on Android
You will also have to navigate into the Platforms/Android folder if you add a file
that already exists under the same name but has a different extension. For example,
if you have a button.jpg image and you decide you want to optimize and compress
it as button.png, this will break the build system when it sees both a .jpg and .png
format of the same name. It will display an error at the command line listing the
filename that is causing the issue, but you will still have to manually fix the issue.
The two Android folders in which you will need to look for any offending resource
files are Platforms | Android | build | intermediates| res | merged | debug
| and Platforms | android | build | intermediates | res | merged | release.
Before compiling and running your application again, verify in your main app |
App_Resources folder that it doesn't have the same duplicate name issue.

Compiled Android application location
The last and most important reason to enter the Platforms | Android folder is to get
a copy of your compiled debug or release Android application APKs for distribution.
Both the release and debug APKs are located in the Platforms | Android | build |
outputs | apk folder.

The platforms/iOS folder
On the iOS side, you will actually have to edit the Platforms | iOS | projectName.
xcodeproj project file for multiple reasons. NativeScript does not currently edit or
change the iOS project file for you, so you have to manually do several parts of the
configuration yourself. To edit the file, double-click on the application project file
inside Platforms | iOS, and Xcode should open up with it and look something
like this:

Chapter 2

[23]

Currently, some of the changes you need to manually make are: adding your Apple
developer key, adding any optional manually added libraries (CocoaPods are
automatically added by the nativescript command), and making any other Xcode
compilation changes you may want or need. The final and best reason you will have
to use the Xcode project is to submit your application to the iOS application store. For
more details on this, Apple has a developer guide at https://developer.apple.
com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/
SubmittingYourApp/SubmittingYourApp.html.

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/SubmittingYourApp/SubmittingYourApp.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/SubmittingYourApp/SubmittingYourApp.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/SubmittingYourApp/SubmittingYourApp.html

The Project Structure

[24]

The app folder
Wow! As you can see, a lot of stuff goes on just to create an application. Now, we are
going to finally discuss the App folder structure; this folder is where we will spend
the majority of our development time. We shall explore what the different types of
files are for and how they are used to create an application. Since this is the primary
development folder and contains your entire code base for your application, I
would highly recommend you put this folder under source control and/or maintain
backups of this folder. The App folder already contains a couple folders and a few
files that are mentioned under the App folder files subsection. Let's look at both of
these folders first and the files contained in them, and finally, we will look at each of
the individual files in the App folder.

The .gradle folder
This folder is for the gradle build system; it basically only contains cache and data
items that are used while the application is being built. This folder might be created
the first time you build your application.

The App_Resources folder
This folder contains a subfolder for iOS and Android. This is one area where
NativeScript does not currently offer you much in terms of cross-platform
abstractions. Each platform has its own resource particularities, and you have
to create the resources for each platform in the way the platform expects it. For
example, in the iOS folder, you will see eight files that are all named variations
of the default. These are all used as the launch screen resource for your iOS
application. These eight screens are basically the same image, but are just different
sizes, resolutions, or orientations. The same thing applies for the fourteen different
icon files. These are all the same icon, and again, with just different resolutions
and sizes. One place you can check out that can help with the app icons is http://
makeappicon.com/.

Feel free to replace any of the images in the App_Resources folder with your own
images to make the app your own. We will be covering more detailed information on
the App_Resources folder and platform differences in Chapter 6, Platform Differences.

http://makeappicon.com/
http://makeappicon.com/

Chapter 2

[25]

The fonts folder
The fonts folder doesn't actually exist, but if you want to use any cool fonts in your
application, you just need to create the fonts folder inside your App folder and
drop any truetype fonts you want to use in it. We will cover fonts a bit more in
Chapter 4, Building a Featured Application.

The app folder files
We are now going to be looking at each of the files that are inside the App folder;
these are the files you will change to make this your application. Let's start with the
support files and finish with the actual files that make up the application page.

The package.json file
This file contains basic information about the current template that was installed.
When you create a new application via the nativescript create command, this
file, by default, copies everything from a template project called tns-template-
hello-world. In the future, NativeScript will allow you to choose the template,
but currently, this is the only template that is available and working. This template
contains the folders we discussed and all the files we are about to discuss. This
package.json file is from that template and basically tells you the template and the
specific version of the template that was installed:

{
 "name": "tns-template-hello-world",
 "main": "app.js",
 "version": "1.5.0",
 ... more json documentation fields...
}

Feel free to modify this package.json file so that it matches your project's name and
project details. This file does not currently serve much purpose beyond template
documentation and the link to the main application file.

License
The License file that comes inside the App folder is the license the tns-template-
hello-world file is under. In your case, your app will probably be distributed under
a different license. You can either update this file to match your application's license
or delete it.

The Project Structure

[26]

App.js
Awesome! We have finally made it to the first of the JavaScript files that make up the
code we will change to make this our application. This file is the bootstrap file of
the entire application and where our fun begins. In the preceding package.json file,
you can see that package.json references this file (app.js) under the main key. This
key in the package.json file is what NativeScript uses to make this file the entry
point for the entire application.

Looking at this file, we can see it is currently four simple lines of code:

var application = require("application");
application.mainModule = "main-page";
application.cssFile = "./app.css";
application.start();

The file seems simple enough, so let us work through the code as we see it. The first
line loads the NativeScript common application component class; the application
component wraps the initialization and life cycle of the entire application.

The require() function is the way you reference another file
in your project; it will look in your current directory by default
and then use some additional logic to look in a couple of places
in the tns_core_modules folder to see if it can find the name
as a common component.

Now that we have the application component loaded, the next lines are used to
configure what the application class does when your program starts and runs.
The second line tells us which one of the files is the main page. The third line tells
the application which CSS file is the main CSS file for the entire application. And
finally, we tell the application component to actually start. Now, in one sense, the
application has actually started running; we are already running our JavaScript code.
This start() function actually starts the code that manages the application life cycle
and the application events, loads and applies your main CSS file, and finally, loads
your main page files.

If you want to add any additional code to this file, you will need
to put it before the application.start() command. On some
platforms, nothing below the application.start() command
will be ran in the app.js file.

Chapter 2

[27]

App.css
This is the application-wide CSS file that provides you with a place to make any of
your styles global for your entire application. If you remember, this file was specified
as the application-wide CSS file on line three of the app.js file. We will cover how
the NativeScript CSS works in the next chapter as there are some key differences
between NativeScript CSS and the typical browser-based CSS. The good news is that
for the most part, the NativeScript CSS works pretty close to what you would expect.

Application page
If you recall, in the app.js file, it had application.mainModule = "main-page"
on line two. Notice that it does not specify a file extension. That is because you are
telling the NativeScript runtimes in which you want it to try and load three different
files that, if present, are all used together to make up a single page. For a page to
automatically work properly, all three related files must be named with the exact
same base name, just a different extension. We are going to discuss the main page
of the application, but any and all pages are created exactly the same way. Let us
proceed and look at the files that make up this page. One thing to keep in mind is
that for a page to work, you must, at a minimum, have either the JS or XML page file.

The main-page.js file
The JavaScript portion of the page is probably where you will spend the majority of
your time developing since it contains all the logic of your page. To create a page,
you typically have a JavaScript file as you can do everything in JavaScript, and it
is where all your logic for the page resides. In our application, the main page is
currently only six lines of code:

var vmModule = require("./main-view-model");
function pageLoaded(args) {
 var page = args.object;
 page.bindingContext = vmModule.mainViewModel;
}
exports.pageLoaded = pageLoaded;

The first line loads the main-view-model.js file. If you haven't guessed yet, in our
new application, this is used as the model file for this page. We will check out the
optional model file in a few minutes after we are done exploring the rest of the main-
page files.

The Project Structure

[28]

An app page does not have to have a model; it is totally optional.
Furthermore, you can actually combine your model JavaScript into
the page's JavaScript file. Some people find it easier to keep their
model separate, so when Telerik designed this example, they built this
application using the MVVM pattern, which uses a separate view model
file. For more information on MVVM, you can see the Wikipedia entry
at https://en.wikipedia.org/wiki/Model_View_ViewModel.

This file also has a function called pageLoaded, which is what sets the model
object as the model for this page. Line three assigns the page variable to the page
component object that is passed as part of the event handler. Line four assigns the
model to the current page's bindingContext. Then, we export the pageLoaded
function as a function called pageLoaded.

Using exports and module.exports are the way we publish
something to any other files that are using require() to load it. Each file
is its own independent blackbox; nothing that is not exported can be seen
by any of the other files. By using exports, you can create your interface of
your code to the rest of the world. This is part of the CommonJS standard,
and you can read more about it at the Node.js website.

The main-page.css file
This file actually does not exist in our new application, but you could create it and it
would then provide CSS for just the main page. NativeScript automatically loads this
file and applies it if it exists.

The main-page.xml file
This is the final file that is also named main-page; it is the page layout file. As you
can see, the main-page.xml layout is a simple seven lines of XML code, which as
you can see, actually does quite a lot:

<Page xmlns="http://www.nativescript.org/tns.xsd"
loaded="pageLoaded">
 <StackLayout>
 <Label text="Tap the button" cssClass="title"/>
 <Button text="TAP" tap="{{ tapAction }}" />
 <Label text="{{ message }}" cssClass="message"
 textWrap="true"/>
 </StackLayout>
</Page>

https://en.wikipedia.org/wiki/Model_View_ViewModel

Chapter 2

[29]

Each of the XML layout files are actually a simplified way to load your visual
components that you want on your page. We will cover the XML Declarative UI in
the next chapter, but in this case, it is what made your app look like this:

The main-view-model.js file
The final file in our tour of the App folder is the model file. This file has about 30 lines
of code. And by looking at the first couple of lines, you might have figured out that
this file was transpiled from TypeScript. Since this file actually has a lot of boilerplate
and unneeded code from the TypeScript conversion, we will rewrite the code in
plain JavaScript to help you easily understand what each of the parts are used for.
This rewrite will be as close to the original as I can make it. So, without further ado,
here is the original transpiled code to compare our new code with:

var observable = require("data/observable");
var HelloWorldModel = (function (_super) {
 __extends(HelloWorldModel, _super);
 function HelloWorldModel() {
 _super.call(this);
 this.counter = 42;
 this.set("message", this.counter + " taps left");
 }

The Project Structure

[30]

 HelloWorldModel.prototype.tapAction = function () {
 this.counter--;
 if (this.counter <= 0) {
 this.set("message", "Hoorraaay! You unlocked the
 NativeScript clicker achievement!");
 }
 else {
 this.set("message", this.counter + " taps left");
 }
 };
 return HelloWorldModel;
})(observable.Observable);
exports.HelloWorldModel = HelloWorldModel;
exports.mainViewModel = new HelloWorldModel();

Our rewrite of the main-view-model.js file
The rewrite of the main-view-model.js file is very straightforward; the first thing
we need is for a working model to also require the Observable class; this is the
primary class that handles data binding events in NativeScript. We then create a new
instance of the Observable class named mainViewModel. Next, we need to assign
the two default values. Then, we create the same tapAction() function, which is the
code that is executed each time the user taps on the button. Finally, we export the
mainViewModel model we created so it is available to any other files that require this
file. This is what the new JavaScript version looks like:

// Require the Observable class and create a new Model from it
var Observable = require("data/observable").Observable;
var mainViewModel = new Observable();
// Setup our default values
mainViewModel.counter = 42;
mainViewModel.set("message", mainViewModel.counter + " taps
left");

// Setup the function that runs when a tap is detected.
mainViewModel.tapAction = function() {
 this.counter--;
 if (this.counter <= 0) {
 this.set("message", "Hoorraaay! You unlocked the NativeScript
 clicker achievement!");
 } else {
 this.set("message", this.counter + " taps left");
 }
};

Chapter 2

[31]

// Export our already instantiated model class as the variable
name that the main-page.js is expecting on line 4.
exports.mainViewModel = mainViewModel;

Pretty much the only thing that is not totally self-explanatory or explained in this
code is the set() command. What is probably fairly obvious is that this command
sets the variable specific to the value specified. However, what is not obvious is
when a value is set on an instance of the Observable class, it will automatically send
a change event to anyone who has asked to be notified of any changes to that specific
variable. If you recall, in the main-page.xml file, with the line <Label text="{{
message }}" ….>, when the layout system creates the label, it will automatically
register the label component as a listener for all change events on the message
variable. Now, every time the message variable is changed, the text on this label
changes. We will be discussing more about observables and binding in the following
chapter.

Foundational components
Now that we have explored all the project files that were automatically created
for you, let's examine several foundational components that have already been
referenced in the main page. These components are the glue of the application, and
without them, we would have no application.

Application component
If you recall, earlier in the chapter, we discussed the app.js file. It basically contains
only the code that is responsible for setting up the properties of your application
and then finally, it starts the application component. So, you probably have guessed
that this is the primary component for your entire application lifecycle. Part of the
features that this component provides us with is access to all the application-wide
events. Frequently, in an app, you will want to know when your app is no longer
the foreground application or when it finally returns to being the foreground
application. To get this information, you can attach to two of the events that it
provides like this:

application.on("suspend", function(event) {
 console.log("Hey, I was suspended – I thought I was your
 favorite app!");
});
application.on("resume", function(event) {
 console.log("Awesome, we are back!");
});

The Project Structure

[32]

Some of the other events you can watch from the application component are launch,
exit, lowMemory, and uncaughtError. These events allow you to handle different
application-wide issues that your application might need to know about.

Frame component
The frame component is the logical view that controls which page is seen. The frame
component only has a couple of functions and properties since it is used to load new
pages or return to prior pages. This is one of the few components for which you do
not typically need to create a new component of its type. In this case, you typically
access the top frame via the special topmost() singleton function and then call any
and all frame functions from that main frame object. The primary methods you will
be using are the navigate(pageName), which is what will load a new page, and
the goBack() function, which is what returns you to the prior page. The only other
function you might use frequently is the function canGoBack(), which you can use
to find out if you can go back any more pages. We will be using these functions later
in this chapter.

Page component
The page component is what wraps up the entire page and provides all the page life
cycle events for each of the pages. Earlier, we explored the three files that make up
a page, but we will now check out the actual page component that uses those three
files and what it does for us. Part of the job of the page component is that it provides
events for things like loading, navigating, and unloading of pages. If you recall, we
had a pageLoaded() function exported on the main-page.js file. This function is
actually tied to a loaded event, which is fired from this component when the actual
main page is loaded. The loaded event allowed us, in this case, to set up a model for
the main page. Since your code for this page is now running, you can use the loaded
event to set up any other logic you might also need at the start of your page before
it is visible to the user. In addition, all the page events also give you access to the
page component as part of the event parameter, which can be used to configure any
other page component changes. Some of the other events that the page component
manages for you are the unloaded, navigating (to and from), navigated (to and
from), and shownModally events.

Chapter 2

[33]

These events are fired in the following sequence when you start to
navigate to a new page:

• Old page fires its navigatingFrom event
• New page fires its navigatingTo event
• Old page fires its navigatedFrom event
• Old page fires its unloaded event
• New page fires its loaded event
• New page fires its navigatedTo event

If you are showing a page modally, the events are:
• New modal page fires its loaded event
• New modal page fires its shownModally event
• New modal page fires its unloaded event
• The original page is now in the callback function you

provided when you called the showModal method

As you can see, you have access to quite a bit of the life cycle of both the page
you are leaving and the page you are now loading. Beyond the events the Page
component offers, it also contains some basic properties like the actual actionBar
property, which allows you access to the actionBar component and all its
functions, properties, and methods. And finally, it has several methods like the
addCss function, which allows you to add CSS programmatically to the page, and
a showModal function, which allows you to load another page to show modally
over the current page. The Page component, like all other visual components, is a
descendant of the View component, so it also contains all the same View properties,
methods, and functions as any other View descendants do. We will be discussing the
View component in the next chapter.

Creating a second page
Now that we have an idea of all the project files and foundational components, why
don't we do something cool and finish off this chapter by creating a brand new page
and then using our newfound skills to navigate to it?

The Project Structure

[34]

Creating additional files and pages
Some people might prefer individual subdirectories per page or some other project
layout scheme. NativeScript has no issues with you creating your project system the
way you want. For our project, and to keep things simple, we are just going to add
any new files to our main app directory. To create a new page, we just need to create
the files associated with a page. So, in this case, we need to create a single new file
called settings.js in our main App folder. And then, finally, we need to make a
change to the main-view-model.js file to show our new page.

Creating settings.js
In our application, we are going to need a settings page, so we are going to create
the framework for our application settings page right now. We are going to just get
our feet a little wet and explore how to build it purely in JavaScript. As you can see,
the following code is fairly straightforward. First, we require all the components we
will be using: Frame, Page, StackLayout, Button, and finally, the Label component.
Some of these components we have discussed already; the rest we will be covering
in the next chapter. Then, we have to export a createPage function, which is what
NativeScript will be running to generate the page if you do not have an XML layout
file to go along with the page's JavaScript file. At the beginning of our createPage
function, we create each of the four components we will need. Then, we assign some
values and properties to make them have some sort of visual capability that we
will be able to see. Next, we create the parent-child relationships and add our label
and button to the Layout component, and then we assign that layout to the Page
component. Finally, we return the page component:

// Add our Requires for the components we need on our page
var frame = require("ui/frame");
var Page = require("ui/page").Page;
var StackLayout = require("ui/layouts/stack-layout").StackLayout;
var Label = require("ui/label").Label;
var Button = require("ui/button").Button;

// Create our required function which NativeScript uses
// to build the page.
exports.createPage = function() {
 // Create our components for this page
 var page = new Page();
 var layout = new StackLayout();
 var welcomeLabel = new Label();
 var backButton = new Button();

Chapter 2

[35]

 // Assign our page title
 page.actionBar.title = "Settings";
 // Setup our welcome label
 welcomeLabel.text = "You are now in Settings!";
 welcomeLabel.cssClass = "message";

 // Setup our Go Back button
 backButton.text = "Go Back";
 backButton.on("tap", function () {
 frame.topmost().goBack();
 });

 // Add our layout items to our StackLayout
 layout.addChild(welcomeLabel);
 layout.addChild(backButton);

 // Assign our layout to the page.
 page.content = layout;
 // Return our created page
 return page;
};

One thing I did want to mention here is that if you are creating a page totally
programmatically, without the use of a Declarative XML file, the createPage
function must return the Page component. The Frame component is expecting to
have a Page component.

Navigating to another page
The final piece is navigating to the new settings page we just created. You will
need to open up your main-view-model.js file. We are going to change the
tapAction function to navigate to our new page. At this point, you may already
know exactly what to do since we have already described what the Frame
component is used for and written code to use the Frame's goBack() function.
So, if you would like to take a break from reading and see if you can handle this,
please feel free to enhance the app to navigate to the new settings page. La...la...la...
la...oh, you're back? Well, did it work? If not, or you are just curious about how I
would do it, let's proceed. We should insert this next piece of code as the very first
line: var frame = require('ui/frame');. This line will give us access to the
Frame object. Then, as the first line inside the tapAction if statement, I would add
the following code: frame.topmost().navigate('settings');. With those two
changes, the application will now show the settings screen when you tap on the
Tap button on the main screen.

The Project Structure

[36]

Running the application
You typically use the nativescript run command to have NativeScript build,
deploy, and launch your application on a device or emulator all in one step.
However, you usually need to provide a couple of additional parameters to tell the
command which device you want to deploy your app to and then run it on. The first
thing you need to append to the command is which platform. So, if you are running
this on an iOS device, you would type tns run ios, and Android would likewise
be tns run android. Most of the time, though, you will be targeting an emulator,
so you will also want to append the --emulator to the command line. For iOS, this
would be tns run ios --emulator, which will automatically launch the default
iOS simulator and run your application inside it. Android is the same; when you add
the --emulator command, it will launch the default Android emulator.

One side note is that since you can have multiple emulators, you can choose which
emulator you want to use on iOS by using the --device <devicename> command,
and you can do the same for Android by using the --avd <devicename> or --geny
<devicename> commands. You can get the devices on iOS by running nativescript
emulate ios --available-devices, and for Android, you can run android list
avd or genyshell –c "device list".

To simplify launching things, I typically create a batch file or a shell script called go
in which I put the complete launch string so I don't have to type in the entire device
name, as the device names can be really long. Then, all I have to do is type go to run
my project.

Viewing our screen
Run the app by typing the nativescript run command with its parameters.

And then, click the Tap button and you should see our brand new settings screen:

Chapter 2

[37]

Before you tap the Go Back button, can you surmise why the button is so large from
the information presented in this chapter? If not, don't worry; we will cover the
answer in the next chapter.

Summary
We have covered a large amount of foundational information in this chapter. Not
only did we go through all the project files that were created by the tns create
crossCommunicator command, but we also covered which files are used for your
application and where to find and make any changes to the project control files. In
addition, we also covered several foundational components such as the Application,
Frame, and Page components. And we walked through the three different files that
make up an application page. Finally, we created a new page and navigated to it and
back from it.

In the next chapter, we are going to cover several more components and explore the
XML Declarative UI and flesh out binding and observables, working with events,
and styling your application with CSS.

[39]

Declarative UI, Styling,
and Events

Since we want to produce sleek and nice-looking applications, we are going to
investigate the Declarative UI and its styling system in this chapter. In addition, we
are going to explore several of the most frequently used common components and
the event system. Finally, we'll wrap up the chapter by actually styling the main
screen.

In this chapter, we will be covering the following topics:

• The Declarative UI
• Using the Declarative UI for our Settings page
• Binding and events
• Styling the UI
• Trying out and styling our application

Declarative UI
We are going to look at how the Declarative UI makes our lives much simpler in that
we typically only have to create a single XML file to cover the way our app looks on
all the platforms.

In this section, we will be exploring how the XML system works behind the scenes.
We'll dissect more components, check out the event system, and finally, look at the
component hierarchy and what it offers us. So, let us dive right into the main-page.
xml file and figure out how it all works.

Declarative UI, Styling, and Events

[40]

XML parser
Whoa! Bet you thought we were going to dive right into the main-page.xml file,
didn't you? Well, not so fast; we have to take a small detour. We need to look at how
the XML parser works to understand what is going on when NativeScript handles a
Declarative UI XML file. So, let's get this show on the road.

Now, if you are coming from an HMTL background, you can probably teach me
some really cool HTML tricks. But, since all of us are not so blessed, we will cover
it for those who aren't familiar with any HTML or XML. An XML parser handles an
XML file by breaking everything down into nodes. A node is what is between the
less than (<) and greater than (>) symbols, for example, <I am a Node>. To close a
<Node>, we use the forward slash (/) character.

So, a standalone node would be <Wow />, with the slash at the end before the
closing greater than symbol. To create a node with other nodes inside it, you'd use
<Wow>... <other nodes>...</Wow>. Each node in the XML is then broken down
into individual parts. The first part of the node is the element, or in NativeScript,
the UI component. The rest of the node is used as properties for that UI component.
One thing to keep in mind is that all the elements and properties are case-sensitive.
Breaking this down, if I have <Hello talk="true"><Hi we="are awesome" /></
Hello>, then the NativeScript parser will basically do the following:

var Hello = require('ui/hello');
var hello = new Hello();
hello.talk = true;
var Hi = require('ui/hi');
var hi = new Hi();
hi.we = "are awesome";
hello.addChild(hi);

Now, as you can see, NativeScript requires and creates each of the components,
assigns all the properties and events, and then finally, handles configuring any
parent-child relationships. This saves us a lot of time and enhances your readability
of the screen UI. Now that we have a grasp on what is happening behind the scenes,
shall we proceed to looking at our main-page.xml file?

<Page xmlns="http://www.nativescript.org/tns.xsd"
loaded="pageLoaded">
 <StackLayout>
 <Label text="Tap the button" cssClass="title"/>
 <Button text="TAP" tap="{{ tapAction }}" />
 <Label text="{{ message }}" cssClass="message"
 textWrap="true"/>
 </StackLayout>
</Page>

Chapter 3

[41]

This file looks familiar; we took a peek at this file briefly in the previous chapter.
How about we finally break down exactly what this file does for us? Let us look at
what happens with each component.

Page, StackLayout, label, and more
Since we are going to look at each of these components from the perspective of the
XML parser, I would like to reinforce that each of these components are actually
all JavaScript code and can be fully controlled by your JavaScript code. So, let's get
started and look at the first XML node.

<Page ...> node
You will notice the entire XML file is wrapped in or contains a root XML element
<Page> node. If you recall in Chapter 2, The Project Structure, we had to create a new
Page component to wrap everything in when we made the settings.js page. This
is how we create the Page component in Declarative UI. Each of the nodes in the file
is defining a new component. The rest of this Page node <Page xmlns="http://
www.nativescript.org/tns.xsd" loaded="pageLoaded"> declaration is page
properties and events.

One side note: the default xmlns property is not actually a real property on the Page
component. It's actually not a real property on anything. This is the only property in
the Declarative UI that is really a totally bogus property. It is not an actual property
on the Page control, so it's not visible from JavaScript. Instead, it is used to configure
the XML parser on how to allow access to additional third-party component folders.
You can link to another component folder by executing xmlns:MyCustomControls =
"path | to | my | controls", and then you can reference a control in that folder
by executing <MyCustomControls:controlName>. The MyCustomControls instance
can be any name you want, so you could just as easily have xmlns:controls="my
| controls/" and then use <controls:controlName>. Oh, and the default xmlns
is currently totally ignored by the parser, so you can actually eliminate it from your
XML file if you want, unless your editor uses it to provide autocorrect and intelligent
typing ability. We will cover more on how to use this in Chapter 5, Installing
Third-Party Components.

As you might have surmised, the loaded property in the XML is actually the loaded
event, which we discussed in regards to the Page component in Chapter 2, The Project
Structure. If you have not surmised yet, we are telling the parser that it needs to hook
up our pageLoaded function that we declared and exported in the main-page.js file
to this Page component's loaded event.

Declarative UI, Styling, and Events

[42]

<StackLayout ...> node
You will notice that the next component, which is inside the <Page> node, is the
<StackLayout> node. Since it is inside the Page node, it will make this a child of the
Page component. Since a Page component can only have a single child, we then have
to use one of the Layout components to allow us to have multiple children.

Technically, a Page component can have two XML children. The first is
the ActionBar; this is behind the scenes and is automatically assigned to
the ActionBar property on the Page. So, in the XML it looks like a child,
but programmatically it is actually assigned to a property, and your child
count will always be 0 or 1 depending on if you add any other controls
that will actually be a child of the Page component. If you are building or
accessing the page programmatically, you will need to access or assign
the ActionBar property and not try to use it as a child.

We will cover all the different styles of layouts and how to mix and match them
properly in Chapter 4, Building a Featured Application. Moving right along, the
StackLayout is one of the simplest layouts. Concisely, the children will either stack
everything horizontally or by default, stack everything vertically. This makes it one
of the more commonly used layouts. In our case, it has three children that will all be
stacked vertically one right after another.

To change the StackLayout orientation, you use the orientation
property and set it to horizontal for a horizontal layout.
This would be accomplished this way: <StackLayout
orientation="horizontal">.

<Label ...> node
The Label <Label text="Tap the button" cssClass="title"/> is the next
component we are declaring, and you will notice it is the first of the children of the
StackLayout. This means it will be first on the screen. The Label is probably the most
common component as it is used to display a line or multiple lines of text on the
screen.

If you need to display HTML text, use the HtmlView component
instead of the Label component.

Chapter 3

[43]

The Label component offers us a couple of properties and methods; the primary
property you will be using is the .text property or the .formattedText property
to set what the label says. In this case, we are using the .text property to make the
label say "Tap the button.".

The second property defined in our Label is the .cssClass property, in which we
assign the value of "title." We will learn later on in this chapter about the cssClass
property and how it is used.

Before we forget, we should look briefly at the .formattedText property. It allows
you to pass in a fully pre-formatted FormattedString component rather than just a
straight text string. We are going to venture down a small bunny trail here to try to
teach you a new concept. The .formattedText property gives me a great place to
teach you an important new concept in the Declarative UI.

FormattedString component
This non-visual component allows you to create spans of text that each have their
own different formatting. For instance, let's pretend the following <Label> XML was
in our main-page.xml file in place of the above <Label> component:

<Label class="title">
 <Label.formattedText>
 <FormattedString>
 <FormattedString.spans>

 </FormattedString.spans>
 </FormattedString>
 </Label.formattedText>
</Label>

You can probably guess that the Label will still say Tap the button. However, Tap
the button will be in 10-point font, and the button will be in a bolded default font
size. Since a picture is worth a thousand words, the above picture is what it would
look like.

Declarative UI, Styling, and Events

[44]

The FormattedString component currently supports changing the fontSize,
fontAttribute (bold and italic), fontFamily, foregroundColor, backgroundColor,
underline, and strikethrough properties. Pretty cool, huh? You might be
wondering, "hey, where is the new concept you promised me?" Well, I have not
forgotten. Pay close attention and look at the XML I wrote previously, and you might
notice that the XML tags I wrote are a bit different from any other Declarative UI
XML we have looked at. It has some periods in some of the component names. As
our new concept, this is how the Declarative UI deals with any complex component
properties.

Complex properties
"What is a complex property?" you ask. A complex property is when you are
creating, modifying, or assigning a subcomponent of the current component. Let us
break this XML down:

• <Label>: This is just like any other XML nodes we have looked at. We are
just creating a new Label component.

• <Label.formattedText>: This is the first complex property. This XML is not
creating a component; instead, it is doing an assignment. It is saying use the
parent component (in this case, the Label), and its property, .formattedText.
This is assigning everything inside this node to the .formattedText
property.

• <FormattedString>: We are creating a brand new FormattedString
component, which is what is assigned to the Label formattedText.

• <FormattedString.spans>: The fourth declaration is another complex
property that will use the FormattedString.spans property for everything
inside itself.

• : The fifth and sixth lines create two new Span components as usual,
which are then assigned as the children to the FormattedString.spans
property.

Or, in JavaScript, the assignments would be:

var label = new Label(); // <Label>
var formattedString = new formattedString() // <FormattedString>
var span1 = new Span(); //
var span2 = new Span(); //
formattedString.spans = [span1, span2]; // <FormattedString.spans>
label.formattedText = formattedString; // <Label.formattedText>

Chapter 3

[45]

The rest of the XML tags are just closing tags, so we will skip them. By using complex
properties, this allows you access to any subcomponents of a component and gives
you the ability to make changes and/or assignments. There is an enhancement
request in the NativeScript project on how to simplify complex properties in the
Declarative UI. By the time this is published and you actually read this section,
there is a strong possibility that complex properties will also support a much more
simplified system, perhaps something like this:

<Label>
 <FormattedString>

 </FormattedString>
</Label>

Under this proposal, the simplified XML would work like this. The Label already
knows the only complex property it has is the formattedText, and the only
property that takes a FormattedString is the formattedText property. When the
Declarative UI parser attempts to add the FormattedString to the Label as a child,
the Label automatically assigns it to the formattedText property based on either
one of the above two criteria. The same thing goes for when the Declarative UI
parser attempts to assign the Span components to the FormattedString property;
the FormattedString property knows the only complex property it has that takes a
Span component is the Spans property.

So, by adding a bit of smarts to the Declarative UI parser, this would optionally
allow us to eliminate a lot of the extra unnecessary Declarative UI code on any
complex properties.

Now that we have wandered down the path of complex properties, shall we resume
manually parsing our original main-page.xml file?

<Button ...> node
The next child of the StackLayout is the Button component,<Button text="TAP"
tap="{{ tapAction }}" />. The Button is another very common component;
you almost always have to click or tap somewhere on the screen to do some sort of
action. In addition to the tap event, the Button component also has both a text and a
formattedText property, which work just like the Label component.

Declarative UI, Styling, and Events

[46]

In the preceding XML, you can see that the Button component has the tap="{{
tapAction }}" property. The double braces (or curly brackets) {{ }} in a property
mean that this property uses binding to attach the tap event. In this case, the binding
system will bind the Button's tap event to the tapAction function on the main-
page-model.js file. We will discuss more about binding later in this chapter when
we discuss the Binding component.

Second <Label...> node
The final child of the StackLayout is another Label node: <Label text="{{ message
}}" cssClass="message" textWrap="true"/>. This label also uses binding like
the button, but in this case, it is binding the text property to the message value on
the main-page-model.js exported class.

The other property in this example is the textWrap property. This allows you to
choose if the text is truncated or wrapped, as shown in this image:

Since the rest of the main-page.xml file is just closing tags, we are going to jump to
another made-up example file to learn another important Declarative UI technique.

Declarative UI and components
As you can see, the Declarative UI is quite expressive. It allows you to handle any
visual layout you might need. It is also fully cross-platform, so your UI works on
each of the supported platforms. It makes designing the screen easy to do with very
little code. However, I wanted to reinforce again that all these UI declarations are
JavaScript components. You can do all of this via JavaScript, and at any point, you
can still change any of the components' properties during runtime.

Chapter 3

[47]

Visual components
All the visual components that you use in the Declarative UI actually have a large
list of methods, properties, and events that are inherited from the View component.
For a list of methods and properties, see: http://docs.nativescript.org/
ApiReference/ui/core/view/View.html. This inheritance is what allows us to do
nifty things like myButton.on('tap', function() { ... do something... });
since the on() method is inherited.

Using the Declarative UI for our settings
page
Since we have now learned how the Declarative UI works, it should be a simple task
to convert our JavaScript version, which we created in Chapter 2, The Project Structure,
into a Declarative UI version. Let's see if you can accomplish this on your own. If
you get stuck or just want to verify, please feel free to see how I did it. Let us start by
creating a new settings.xml file.

Our settings.xml file
Let us see how much we have learned. I will ask a question, and you determine if
you can answer it.

• The first thing we need to do is create the _____ component. Yes, you are
totally correct; the Page component is always first. Now, this next one is
going to be tricky.

• The next component you need is ____. If, you said StackLayout, you are
close—the StackLayout will be needed, but we have one other component
property that should actually come before it. You might want to read the
source code to the settings.js file again to see if you can figure it out.
Don't worry, I'll wait patiently.

• So, you need a _____? If you said Page.actionBar, you would be
totally correct. You figured out that little curveball of mine in the source
code. We needed a complex property to assign the title to an actionBar
subcomponent. Uh oh, another tricky spot! Think back to our complex
properties discussion; do you think you can guess what tag you need now?

• We need a ______? ActionBar. Awesome, you noticed—when dealing with
any complex properties, the majority of the time a subcomponent is named
the same as the property. Now comes another tricky one.

http://docs.nativescript.org/ApiReference/ui/core/view/View.html
http://docs.nativescript.org/ApiReference/ui/core/view/View.html

Declarative UI, Styling, and Events

[48]

• What do we need now _____? Hah, did I get you on this one? Or did you
figure out that we need the closing page.actionBar tag?

• Finally, we need the _____? StackLayout tag.
• Following that, we need a ______? Yes, you are correct, a Label.
• Then, we need one more component, the ______? Yep, it is the Button. For

simplicity's sake, let's name the tap listener to tap on the button. And then,
we can put in the rest of our closing tags.

If you skipped the page.ActionBar tag in our questions and just used
the ActionBar tag, this is also correct usage for the Page component.
Normally, you need to use complex properties to access a property. The
Page component actually has some additional code while it is being built,
and so if you use an ActionBar component as a child, it automatically
gets assigned as the page ActionBar property. Using this complex
property is more semantically correct as it shows you that it is a property
and not a child, but both methods work the same way.

Our new settings.xml file should look like this:

<Page>
 <Page.actionBar>
 <ActionBar title="Settings" />
 </Page.actionBar>
 <StackLayout>
 <Label text="We are now in the settings!" cssClass="message"
 />
 <Button text="Back" tap="tap" />
 </StackLayout>
</Page>

You might have noticed in the preceding Declarative UI setting page that we used
<Button text="Back" tap="tap"> rather than the {{ tapAction }} property that
is present in the main page. The reason is that on the settings page, we are not using
a binding model; we are telling the Declarative UI to use the tap function exported
in the settings.js file. On the main page, it is using the binding system to bind to
the tapAction function that the model exports.

Chapter 3

[49]

Awesome! Now, our XML file, when we run it, should look exactly like our pure
JavaScript version did from the last chapter. However, now we need to modify the
settings.js file since it is also going to create the same interface before the XML
even loads. Do you think you can modify the settings.js file to make it work
properly now? Here are a couple of hints:

• In our preceding code, we set the button.tap = "tap" property
• You only need one require() statement
• The file should be two or four lines long
• You only need one function, which only contains a single line of code

Hopefully, you wrote something like this:

var frame = require("ui/frame");
exports.tap = function() {
 frame.topmost().goBack();
};

This code is simple; you need to require the frame component because we use the
goBack() method from the frame. You also need to export the tap function, since the
UI is going to be looking for an exported tap function to be in the settings.js file.
And, of course, in the tap function we need to run the actual goBack() command.

Your next step is to do a nativescript run android --emulator execution and
check out our brand new XML version of the settings screen. I want to point out
that the XML version and the new Node.js code work identically; however, we
went from around 40 lines of pure JavaScript code to nine lines of XML and four
lines of JavaScript. This ends up being a lot smaller and much easier to enhance and
maintain.

Binding and event system
We are going to change gears for a few minutes to touch on two other related topics
that not only affect the Declarative UI, but your whole application. You need to
be able to respond to any event, like finger touches, downloads completing, and
the application being stopped. In addition to the event system, a related subject is
binding, as binding typically handles part of the event automatically. So, let's dig
into these two areas of NativeScript.

Declarative UI, Styling, and Events

[50]

Event system
While we have already touched briefly on one use of the Observable component
when we discussed the model file in Chapter 2, The Project Structure, let us go more
in-depth on this component.

This component has two similar responsibilities; both deal with events. First, this
class is used as the source class for using any variables that need binding.

By source, I mean this is the class that provides the memory location for you to
store your variables that you want to stay in sync with other components and your
code. For example, if you look at our created main-view-model.js property that
we discussed in Chapter 2, The Project Structure, it uses the Observable component
for the counter variable and the tapAction. This is the source class for tracking
our counter variable. The other components and your own code can also listen
for propertyChange events. This event is fired, which allows you to react anytime
that property or variable is changed. The NativeScript components, when bound,
automatically listen for that event and will update themselves every time that
variable changes. This also is frequently two-way, so that when the component value
changes, it changes the source variable. You can use the set and get methods to
create, change, and view these variables.

The second responsibility of this component is that it is the entire event system. Yes,
you read that correctly. This component is the entire event system for the application.
If you are listening to an event, it is because of this component. You can easily listen
to any event you want and then anywhere else in your code, fire a notification for
that event. This component handles all of it. The Observable component is fully
responsible for tracking every one of the events and each of the events' callback
listeners.

The methods the Observable component publishes for subscribing to an event are the
on or attachEventListener listener. Then, to stop listening to any event, you can
use the off or removeEventListener listener.

Finally, to notify all of the event listeners of an event, you can use the notify method.
If you recall, we used the on method in Chapter 2, The Project Structure, for our new
settings page, like this: backButton.on("tap", function (evt) { … });. In
addition, the Declarative UI XML <Button tap="tapAction" /> that we looked
at earlier in this chapter attaches each of its events using the exact same Observable
methods behind the scenes.

Chapter 3

[51]

In NativeScript, you can attach multiple listeners to each event, and each
one will be called when the event occurs. There is currently no way to
cancel or stop the propagation of an event, so in NativeScript, all the
event handlers will be called.

Binding
Binding is what allows us to do <Edit value="{{ message }}"> in the Declarative
UI and have it automatically update the edit value when the message value changes.
The Bindable component handles all the binding and the callbacks for any bindable
properties.

Using binding is actually simple. You need a source object, in this case, the
message variable. You need the component itself, so again, in this example, the Edit
component. Then, you just use the bind method on the Edit component to bind the
source object to itself. Likewise, if you need to unbind, you would use the method
named unbind.

The final property of the Bindable component is bindingContext, which is used
to set the primary Observable object of the component and its children. If you
recall in the prior chapter, the main-page.js file executed page.bindingContext
= vmModule.mainViewModel. This code sets the page's bindingContext to the
Observable object the mainViewModel file exported. This is needed so that
the two bindings that are in the main-page.xml will connect to the source object.
{{ message }} binds to the mainViewModel.message variable, and
{{ tapAction }} binds to the mainViewModel.tapAction method.

Binding actually supports advanced features like ternary operators {{ someVar ===
'hello' ? "Hi" : someVar }}, or expressions like {{ someVar, "This is a "
+ someVar + ", neeto! " }}, where it can do evaluations and show other values
based on the result. The whole list of expressions can be viewed at http://docs.
nativescript.org/bindings.html#supported-expressions.

Now that we have a much better grasp of the events and bindings, how about we
switch gears and learn about how to apply a theme to your application and make it
look any way you want it to be?

http://docs.nativescript.org/bindings.html#supported-expressions
http://docs.nativescript.org/bindings.html#supported-expressions

Declarative UI, Styling, and Events

[52]

Styling the UI
The primary method to style our applications is the NativeScript variation on
Cascading Style Sheets (CSS). If you are familiar with developing on a browser,
then you should be right at home in NativeScript. If not, we will be walking you
through a couple of examples to show how CSS works.

The NativeScript CSS has some differences from the normal CSS, but overall, it
works pretty similar to how a browser does. How about we get started and discuss
the what, why, how, and which of CSS. What is CSS, why use it, how is CSS applied,
and finally, which properties does NativeScript currently support? Then, we will
finish by looking at the main application wide app.css file to see how it is applied to
our application.

What is CSS?
CSS is a styling language designed to allow you to create the presentation rules for a
marked up file. In plain English, it allows you to separate your styles (that is, colors,
sizes, positioning) from your markup (that is, the Declarative UI elements like Page
and Button).

CSS is designed to allow later rules to cascade throughout and enhance or override
prior rules. When I create a rule in my application-wide CSS file that all buttons
need to be 40 point font, every single button in the application would then contain
40-point font. However, if in my someOtherPage.css file I put that all buttons on
this page are supposed to be 20-point font, then the buttons on just this specific page
would be 20-point. The rest of the buttons on every other page in my application
would still be 40-point.

CSS is designed to allow more specific rules to override less specific rules. When I
apply a general rule saying all buttons should be 40-point font, then I create another
rule in the application-wide CSS saying all buttons that have the class of Small are to
be 20-point. On the screen, you will see that any button without the Small cssClass
would be 40-point, and those buttons that have the Small cssClass would be
20-point.

Chapter 3

[53]

Why use CSS?
CSS allows you to easily create your own style for all the components throughout
your application. Later in the application lifetime, if you decide or need to change
your color scheme to match Apple or Google's newest color scheme, then all you
need to do is change your CSS. It will then style all your pages without you having
to touch every single component in your application. The other awesome thing about
CSS is that you can have multiple application themes (like Light and Dark themes);
all you need to do is apply the correct CSS file in one place and everything in your
application is automatically updated.

How to use CSS
To set a value on a component (like size or color), we use something called a selector.
A selector allows the CSS parser to figure out which component(s) each rule applies
to. In a browser, there are a huge number of selectors and selector modifiers.
NativeScript only supports the main three types of basic selectors, and you have no
modifiers. The three selector types are ID, Class, and the Element or Component
type. ID is the highest priority selector. The class, or CSSClass, is the next highest
priority. Finally, the element type is the lowest. The ID rule, #myIdRule, uses the ID
you assign to the id property of the component and is prefixed with the pound (#)
symbol.

A class rule looks like .myClassName; it is the class name you assign to a class or
cssClass and is prefixed with a period symbol.

In NativeScript v1.4, they finally added some logic to allow the XML class
to be mapped to cssClass. So, throughout the book, you will see almost
all the examples using cssClass, as cssClass has been the default
since NativeScript was in the beginning stages; however, class is now the
same valid property.

The element rule is just the name of the element or component; like Button or Label.
CSS selectors are case-sensitive, so Button, button, buTTon or BUTTON all work the
same.

Declarative UI, Styling, and Events

[54]

Shall we check out a couple of sample rules? Here are five sample rules:

.MyClass { color: red; font-weight: bold; }
#MyId { color: green; }
Button { color: blue; }
Label { font-size: 10; }
StackLayout { font-size: 20; }

With these five rules, you might have guessed that StackLayout would be assigned
a 20-point font. Whoa, wait a minute! StackLayout does not have any text; it is a
layout. Why would I assign StackLayout a font size of 20? Well, the first word of
CSS is Cascading. All components inside StackLayout will now get the default font
size of 20 because of the values cascading.

Next, you will see that all Buttons normally start with blue text (with 20-point font).
All Labels will be 10-point font, because the Label rule overrides the StackLayout
rule. Now, for a bit more specificity, any component that had a class or cssClass
equal to MyClass would get the color of red, and the text would be bolded. Any
component that had an ID of MyId would finally become green.

So, if I had this: <StackLayout><Button id="MyId" cssClass="MyClass"></
StackLayout>. what color would the button be? Would it be bold? What font
size? The answers are: green, bold, and 20-point font. StackLayout would apply
the 20-point font, MyClass would apply color and bolding, but MyId would then
overwrite the MyClass color and apply its color since ID rules are the highest priority
rules.

Configuring your CSS Rules
Just like with a browser, the following or later CSS rules override the preceding
rules. So, if my CSS was:

#Awesome { font-size: 20; color: green; }
... other css rules ...
#Awesome { font-size: 22; }

Anything that was using the ID of Awesome would be green (first rule) but would
have the font size of 22 applied, since the last rule overrode the first rule.

Chapter 3

[55]

In NativeScript, there are several places you can put your CSS rules, including the
application-wide app.css file, which we mentioned earlier and is configured via
the app.js file. Anything you want applied or accessible from all pages is put in the
app.css file. This application-wide CSS file is applied first. Then, the pageName.css
file is applied; this file is only used on that single page named exactly like it. Then,
in JavaScript, you can call Page.addCssFile() to apply any additional files, or you
can call Page.addCss()to append a CSS string to the page. These two commands are
applied in the order that the statements run.

The Page component also has a .css property. You can read it to see
all the CSS rules that are currently applied to the page. However, if
you assign anything to it, it will clear all CSS already applied to the
page except the application-wide CSS. So, if all you are wanting to do
is append some more CSS to the page, make sure you use the Page.
addCss() method, not the .css property.

Finally, each component has its own .style property. The .style property has
multiple subproperties, which are what control the look and feel of that component.
All CSS ultimately gets applied to the actual component style. A small note of
discrepancy: in the Declarative UI, you can execute <Label style="padding-
left:2; padding-right:2">; however, in JavaScript, you have to execute
Label.style.paddingLeft = 2; You cannot execute Label.style="padding-
left:2"; because when the Declarative UI goes to apply the style string property,
it automatically parses it into the subproperties and then applies each of the
subproperties.

In CSS, all styles are in the format of name-name (name dash name
called kebab-case) instead of a space, for example, background-
color or padding-top. CSS properties are case-sensitive in
NativeScript. In JavaScript, the dash is removed and then the
following letter is capitalized. The name ends up being camel-cased,
like .backgroundColor or .paddingTop.

Declarative UI, Styling, and Events

[56]

Existing CSS properties
Now, here is where a major difference occurs between NativeScript and browsers.
The number of properties is completely different. Most browsers support over 300
standardized CSS properties, and many more browser-specific CSS properties. Since
a browser is designed to render markup in different ways, it needs help to be precise
so it has a huge number of CSS properties. In NativeScript, you build things totally
differently, and so it currently only has around 30 CSS properties. Let us discuss how
and which properties work.

CSS property JavaScript property
Description and supported
value

background-color backgroundColor
Sets the background color.
Supports Color*.

background-image backgroundImage

Sets the background image.
Supports String (path or
resource).

background-position backgroundPosition

Sets the background image
position. Supports Absolute,
Positioning, or Percentage.

background-repeat backgroundRepeat

Sets the background image
repeatability. Supports repeat,
repeat-x, repeat-y, and no-
repeat.

background-size backgroundSize

Sets the background image size.
Supports "height#, width#",
"height%, width%", "cover",
or "contain".

border-color borderColor
Sets the border color. Supports
Color*.

border-radius borderRadius
Sets the border radius. Supports
Integer.

border-width borderWidth
Sets a border width. Supports
Integer.

color color
Sets the foreground or text color.
Supports Color*.

font font

Sets the font properties; the
format should be: font-family,
font-size, font-style,
and font-weight. Example:
"Arial, Times 12 Bold".

Chapter 3

[57]

CSS property JavaScript property
Description and supported
value

font-family fontFamily
Sets the font family. Example:
Arial, Times, Serif.

font-size fontSize
Sets the font size. Supports
Integer.

font-style fontStyle
Sets the font style. Supports
italic or normal.

font-weight fontWeight
Sets the font weight. Supports
bold or normal.

height height
Sets the height. Supports
Integer.

horizontal-align horizontalAlignment

Sets the horizontal alignment.
Supports left, center, right,
or stretch.

margin margin
Sets the margin sides. Supports
Integer.

margin-bottom marginBottom
Sets the bottom margin. Supports
Integer.

margin-left marginLeft
Sets the left margin. Supports
Integer.

margin-right marginRight
Sets the right margin. Supports
Integer.

margin-top marginTop
Sets the top margin. Supports
Integer.

min-height minHeight
Sets the minimal height.
Supports Integer.

min-width minWidth
Sets the minimal width. Supports
Integer.

opacity opacity

Sets the opacity. Supports
decimals from 0.0 (fully
transparent) to 1.0 (fully
opaque).

padding padding
Padding for layout sides.
Supports Integer.

padding-bottom paddingBottom
Padding for layout bottom.
Supports Integer.

padding-left paddingLeft
Padding for layout left. Supports
Integer.

padding-right paddingRight
Padding for layout right.
Supports Integer.

Declarative UI, Styling, and Events

[58]

CSS property JavaScript property
Description and supported
value

padding-top paddingTop
Padding for layout top. Supports
Integer.

text-align textAlignment
Sets text alignment. Supports
left, center, or right.

vertical-align verticalAlignment

Sets the vertical alignment.
Supports top, center, bottom,
or stretch.

visibility visibility
Sets the visibility. Supports
visible or collapse.

width width
Sets the width. Supports
Integer.

* Color Support is very thorough in NativeScript. Colors can be named Blue,
Aquamarine, and Pink, for example. They can also be Alpha, Red, Green, and Blue
hexadecimal in the following standard formats: #RGB, #RRGGBB, or #AARRGGBB.

As you can see, there are a large number of standard properties that apply to almost
all components. Padding is one of the few properties that I will point out only
supports a couple of the components. Otherwise, virtually all the visual components
support each of these CSS properties. The other difference that should be noted is
that concerning all size and location property values, where in a browser you might
use em, px, or %, NativeScript does not currently support any of these; you just
use the raw device independent pixel number with no number qualifier. In future
versions of NativeScript the % may be supported.

Exploring app.css
We glossed over this file earlier in the chapter, so how about we finally dissect it
and see how it styles our application? The app.css file that comes in our awesome
application looks like this:

.title {
 font-size: 30;
 horizontal-align: center;
 margin:20;
}

Chapter 3

[59]

Button {
 font-size: 42;
 horizontal-align: center;
}

.message {
 font-size: 20;
 color: #284848;
 horizontal-align: center;
}

Well, this file is simple now that we understand the CSS rules and properties. The
first rule (.title) is a class rule (because it uses the period in it). Any component
that has the cssClass of title will have the rule applied to it, which is:

• Font size of 30
• Center-aligned
• Margin of 20 (DP) device independent pixels all around it

In our main-page.xml file, that component is a first label and it says Tap the button.
The second rule (Button) is an element or component rule (because it is the name
of a component). Any component that is a button will have the rule applied to it,
which is:

• Font size of 42
• Center-aligned

This rule matches both the button on the main page and our new button in the
settings file. This is why the Go Back button on the settings page was so large.
The third rule is another class rule (.message); any component that has the
cssClass of message will have its rule applied to it, which is:

• Font size of 20
• Colored a greyish color
• Center-aligned

This is used by the second label, which says 42 taps left. This is also the same
cssClass that we choose to use in our new settings file.

Declarative UI, Styling, and Events

[60]

Trying CSS out and styling our
application
Let us open up our app.css file and make some changes. First of all, I really want a
white background rather than gray. Can you guess which selector and CSS property
we need to use? Your best bet is to use the Page selector; however, StackLayout
would work in the current case because it also covers the entire page. The property is
background-color.

Next, I would like the Tap the button message to stand out a bit more. So, let us do
a couple of things. We need to modify the .title rule and reduce the margin to 10.
To make the font stand out a bit more, how about we bold it and change the color to
#FF0111?

Next, we really want the button to stand out. So, we will change the Button rules.
First off, I like rounded corners. We need to add a border-radius of 15 to it. Since we
added a radius, we need to actually define the background color to be #dddddd. We
also need to tell it how wide we want the button to be to make it look sharp. I am
choosing a width of 150. Finally, we will change the font size to 50.

Man, we can't forget about the message rule; so how about we add a margin-top of
10 and then change the font color to #3ca8dd? Our final app.css file should look like
this:

Page {
 background-color: white;
}

.title {
 font-size: 30;
 horizontal-align: center;
 margin: 10;
 font-weight: bold;
 color: #FF0111;
}

button {
 font-size: 50;
 horizontal-align: center;
 border-radius: 15;
 width: 150;
 background-color: #dddddd;
}

Chapter 3

[61]

.message {
 margin-top: 10;
 font-size: 20;
 color: #3ca8dd;
 horizontal-align: center;
}

Now, go ahead, and execute a nativescript run android --emulator command
and check out the results, which look like this:

Styling on your own
I would recommend you take a few minutes to play around and try styling the
application via the app.css file. Try going into the settings screen; do you notice
how the settings button is now not very nice-looking? Well, see if you can fix it
without messing up the main screen. Try and change your background, fonts,
margins, and padding. You can then create a new settings.css or a main-page.
css file to play with styling for just one page. See how your local page.css files
override the app.css file rules. Can you create rules that style multiple labels
one way, but then create a more specific rule that overrides only part of the rules
for some of them? Please feel free to modify any of your application files. Your
imagination is the limit.

Declarative UI, Styling, and Events

[62]

Summary
We covered a lot in this chapter. You learned how the Declarative UI works, from
the XML parser and how it parses to how to develop your screens in Declarative
UI. You also learned which component handles all the events in the system. In
addition, you learned how visual components, by being a descendant in the view
tree, all have access to a large number of properties, events, and methods. Then, we
learned how NativeScript styles your pages and components. Next, we learned how
to use the CSS to style a single item on a single page to every item on all pages in
our application. Finally, we made our application stand out a lot more by styling the
main items.

Now that you have a solid understanding on how the entire system works, we are
going to change the sample application into a real communication application in the
next chapter. We are going to dig into lots of code, CSS, and Declarative UI. We will
also get to look at several new visual components and finally use several non-visual
components.

[63]

Building a Featured
Application

Awesome! We have finally made it to the point where we can start getting into the
meat of the application. We have covered a lot in the earlier chapters. So, hold on
tight as we actually finally get to build a fully functional NativeScript cross-device
communication application.

In this chapter, we will cover the following topics:

• Layouts
• Building our featured application
• Nonvisual components
• Building the main screen
• Fonts
• Icons
• Communication with the server
• Trying out our application

Layouts
I will cover the different Layout types that NativeScript offers. We have already
covered StackLayout in the previous chapters. To keep things in one place for your
easy reference, I will briefly cover StackeLayout again. In addition to the descriptions
here, the Layouter program, containing a sample of each of these layouts, is
included with this book or can be downloaded from https://github.com/
GettingStartedWithNativeScript.

https://github.com/GettingStartedWithNativeScript
https://github.com/GettingStartedWithNativeScript

Building a Featured Application

[64]

StackLayout
The StackLayout allows you to stack things either vertically or horizontally. It will
only put a single item into each layout slot. The layout slot will be either the entire
width of the screen or the full height of the screen. Each item can use as much
height or width in the stacking direction. For example in horizontal layout, black
needed way less room than light black. In the vertical layout, you can see shade 2
uses more height than shade 1. To choose the horizontal version, you need to set the
orientation= "horizontal". By default, it will be vertical. Look at the following sample:

WrapLayout
This layout, as you would expect from its name, will keep putting items next to each
other on the same line until it has to wrap them. The height of each line will be the
same. So, all items on the line will take the amount of physical height space on the
line, leaving you with a blank area around any items that are not as tall. As you can
see from the preceding sample, shade 1 is not as tall as shade 2, and even though
there is a lot of room, shade 3 does not automatically move up and fit into that space.
Each whole line still takes the same height as its tallest item. The other thing is that
shade 3 is set to wrap words internally, but the wrap layout does not wrap words.
The whole label is wrapped to the next line, as shown here:

Chapter 4

[65]

AbsoluteLayout
AbsoluteLayout is, well, absolute. Funny, I know—I should have been a comedian.
In AbsoluteLayout, you give each child a position in the top-left corner of the screen.
The components will then layout in the order that they are declared. In this image,
you can see that shade 3 was declared earlier in the component order, and shade 4
was declared later, as it overlaps shade 3 and shade 2:

Building a Featured Application

[66]

DockLayout
DockLayout allows you to dock items to one of the four borders and/or fill the
screen with the last declared item. So, in this example, I declared the first item on
the bottom, then to the left, then to the top, then to the right, and then, finally, at the
center. You only have to declare the sides you want, and then, you can choose to
fill the remainder of the screen with the final declared child in the dock layout. To
choose the site, you can set dock="SIDE" on the child element, or in the declaration
of DockLayout, you can add stretchLastChild="true" to cause the very last child
to fill up the remaining space. Look at the following screenshot:

GridLayout
The final layout I am describing is probably the most awesome of the bunch. The
image does not do it justice. In the first image, I declared a 4 × 4 grid. I made it have
four equal columns and four auto-sized rows. The shade 1 item is set to have a
colspan of four columns, so it takes up the entire width. Shade 3 is set to only take
one column, so it wraps onto the next line. Black, light black, and shade 4 are all set
to take two columns each. Finally, shade 2 is set to three columns, as shown in this
image:

Chapter 4

[67]

To make sure you understand a column and row layout, this image shows you
how columns and rows are laid out. NativeScript starts with Column0 and Row0.
Each item in the grid item can span one to multiple columns and/or one to multiple
rows. Each column and/or row can also be a different height from any other row or
column. On GridLayout itself, you need to declare columns= "x,x,x…" and rows=
"x,x,x…", where x can be a star, a number, or an auto size. On the child elements,
you need to tell them which row and column they are in and whether they have a
rowSpan or colSpan value. We will discuss GridLayouts and the star, number, and
auto sizes later in this chapter with real examples.

Currently, these are the built-in layouts in NativeScript. With these layouts, you can
pretty much build any screen you want. You can easily mix and match layouts by
putting layouts within layouts. You can nest any layout inside another layout.

Building a Featured Application

[68]

Here is an example:

<StackLayout>
<StackLayout orientation="horizontal"> ... </StackLayout>
<StackLayout orientation="horizontal"> ... </StackLayout>
...
</StackLayout>

You can easily add a StackLayout property inside a StackLayout property to allow
you to have multiple items in each vertical row.

Now that we have seen all the different layouts that are available, let's work on
building our application.

Building our featured application
We will now build a full-featured cross-platform communication application. This
application will ultimately allow you to have real-time communication with any
other people connected to the same server. The application will run the exact same
way on each of the platforms. By the time we are done, the application will look
like this:

Chapter 4

[69]

The first thing we will work on is the settings screen, as we need some place to put in
the server address and your name. Then, we will begin work on the main application
screen. Let's get this show on the road!

Nonvisual components
In the prior chapters, we started to create a page called settings, but now, we actually
need to convert it from that simple demo test screen into a real settings screen.
For this screen to work properly, we need a component that we can use to store
information when our application is no longer running. The best component for this
is the application-settings component. This is a nonvisual component, meaning you
do not create it in the Declarative UI XML. This is constructed and used in JavaScript.
This component has only a couple of simple methods, but the most important thing
is that the settings are persistent so that we can access them forever.

So, let's open up our settings.js file and completely empty it. We will totally
rewrite it, and I shall show you how we will use this awesome component. The first
change we will make is to require the application-settings module. So, your
code should start like this:

var appSettings = require('application-settings');
var Observable = require("data/observable").Observable;
var dialogs = require('ui/dialogs');

As you can see, we are loading the application-settings, observable and
dialog components. The application-settings component does the persisting of
data. We covered the Observable component in Chapter 3, Declarative UI, Styling, and
Events. Finally, the dialog component allows you to create dialogs easily, and you
will see how we use it at the end of the settings.js code.

The next step is to set up our page-wide variables. This is simple. We just want to
store the actual page variable, and we need to create an observable variable with
name and server values, as these are the two settings that we will persist. The code
will look like this:

var page;
var settings = new Observable();
settings.set("name","Guest");
settings.set("server","nativescript.rocks:3000");

Building a Featured Application

[70]

That was simple! We just defined two variables and set two properties on the
observable. The next part of the code is the actual functions that do the work on the
screen. The first function that we need will be very similar to the code we explored in
earlier chapters. We need to capture and assign the page variable, and we need to set
the binding up. The best event to do this in is the loaded event:

exports.loaded = function(args) {
 page = args.object;
 page.bindingContext = settings;
};

Simple enough, assign the page variable and set the page.bindingContext variable
to our setting observable variable we just declared.

Now comes the fun part. We need to retrieve our stored settings. We could have
done it in the loaded event, but this event only fires the very first time the page is
created. We actually want to load the values each time we show the settings page. To
accomplish this, we will use the shownModally event function like this:

exports.shownModally=function() {
 if (appSettings.getBoolean("setup")) {
 settings.set("name", appSettings.getString("name"));
 settings.set("server", appSettings.getString("server"));
 }
};

If you have not guessed how this works, it is straightforward. We are checking to see
whether we have ever saved it before. If we have saved it before, then we would load
the name and server variables from our persistent storage and then set them on the
settings observable variable. Let's see whether you can guess the next piece of the
puzzle since we just loaded the values. Yes, you got it—we need to save the values.
So, being totally original, I named it, as shown here:

exports.save = function() {
 if (!checkFieldValue('name')) return;
 if (!checkFieldValue('server')) return;

 appSettings.setBoolean("setup", true);
 appSettings.setString("name", settings.get('name'));
 appSettings.setString("server", settings.get('server'));
 page.closeModal();
};

Chapter 4

[71]

OK. So, that was not nearly as original as I claimed, but what else would you name
it? The save() function runs a function to verify that the name and server values are
not blank before it saves the data. Then, it saves the data and closes the dialog.

Following the save routine, we want a visible way to cancel the dialog. Can you
guess the next function name? Let's take a look at the following code snippet:

exports.cancel = function() {
 page.closeModal();
};

Wow, that was some seriously complicated code, right? Oh, wait! I am thinking of
some other function. In this very simple function, all we do is close the dialog. This
is part of the reason we want to reload the values each time we open up the settings
page. We want to make sure when you reopen the settings, it has the current settings
and not the last changed values that you just cancelled. Note that on the Android,
you can also cancel the page by touching anywhere outside the page. This is the
second part of the reason I chose to load the values at opening. The final and the best
reason is we only have to have the load or reset code in one place to handle all the
cases.

The final function that we have is the checkFieldValue() function, which I called
in the save routine. It is used to make the end users have a little cleaner experience
when they do not put in the values we expect. So, here it is:

function checkFieldValue(field) {
 var fieldValue = settings.get(field);
 if (!fieldValue) {
 dialogs.alert("The "+field+" can't be left blank. Please fill
 in a value.");
 var fieldId = page.getViewById(field);
 if (fieldId) {
 fieldId.focus();
 }
 return false;
 }
 return true;
}

This function is straightforward. First, we retrieved the value from the observable,
and if it is blank, then we show an error dialog. Finally, we attempted to find the
field for this value on the screen and refocus on that specific field. Let's expand a bit
on the dialogs.

Building a Featured Application

[72]

Dialogs
NativeScript has several built-in dialogs, but the dialogs in NativeScript are actually
quite different than what you may be used to—they do not block execution. They are
totally asynchronous. Take a look at the following lines of code:

console.log("Hi I'm before dialog");
dialogs.alert("Hey").then(function() {
 console.log("Dialog done");
});
console.log("Hi I'm after the dialog");

It will print the following output:

Hi I'm before dialog
Hi I'm after the dialog
Dialog done

Your code continues running even though a dialog is up. The then() function sets
the callback code that will run when you close the dialog. All the dialogs use the ES6
promises-based system, which we will explore now.

ES6 is the standard for the next version of JavaScript. It actually stands
for ECMAScript 6. The ECMA standards body produces new standards
where JavaScript is the implementation of the language from the
standards group.

Before we diverge again, let's finish looking at the different types of dialogs
available. Then, we will explore promises. The object you pass into the dialog
routines is typically an object that can or will contain one or more of these:

{
 title: "The Title of the Dialog",
 message: "The Message in the Dialog",
 okButtonText: "The Ok Button Text",
 cancelButtonText: "The Cancel Button Text",
 defaultText: "The default prompt text",
 username: "Default User Name",
 password: "Default Password",
 actions: ["An", "Array", "Of", "Actions"]
}

Chapter 4

[73]

Alert dialog
You have the standard Alert dialog, which allows you to set a message and a title,
and has a OK button. You can call it using dialogs.alert({title: "My Alert
Title", message: "My Message", okButtonText: "Click me!"}).then(…);. It
looks like this:

Confirm dialog
This dialog allows you to ask a yes/ok or no/cancel type question. You can
also change the title, message, and both buttons' text, as shown in the following
screenshot. This one is called via dialogs.confirm({title: "My Confirm
Title", message: "My Message", okButtonText: "Ok Button!",
cancelButtonText: "Cancel Me"}).then(…);:

Building a Featured Application

[74]

Prompt dialog
This dialog allows you to ask for an answer. You can also set the same title, header,
button, and even the input type and default value (see the following image). You
call this one using dialogs.prompt({title: "My Prompt Title", message:
"My Prompt Message", defaultText: "Default Text", okButtonText:
"Ok Button!", cancelButtonText: "Cancel Me"});. Look at the following
screenshot:

Login dialog
This dialog also has the ability to change the title, message, and buttons, as shown
in the following screenshot. However, it has two inputs: one of them for a username
and one of them for a password. You can also set the defaults for both of them. To
open up the login dialog, you can call dialogs.login({userName: "Username",
password: "password", title: "My Login Title", message: "My Login
Message", okButtonText: "Ok Button!", cancelButtonText: "Cancel
Me"}).then(…);.

Chapter 4

[75]

Action dialog
This dialog gives you a list of items you can choose. When the item gets chosen,
it returns a value. It also allows you to change the title, message, and button
texts (see the following image). To open the action dialog, you can call dialogs.
action({title: "My Action Title", message: "My Action Message",
cancelButtonText: "Cancel Me", actions: ["Apple", "Orange",
"Grape"]}).then(…);.

You can also explore these dialogs and the code to generate them in the
layouter program, which can be downloaded from https://github.com/
GettingStartedWithNativeScript. Now, let's take a look at what promises are,
which is what dialog, and what many other NativeScript components returns.

Promises
NativeScript in a lot of its code actually uses the newer ES6 promise-based standard
system. Instead of passing a callback into the function, the code returns a promise
object on which you can use a then() or catch() function. The then() function
allows you to set up your function you want to run when the promise is successful.
The catch() function is what allows you to set up a function to be run when the
promise has failed. An example would look like this:

var processCompleted = doSomeAsyncTask();
processCompleted.then(handleSuccess).catch(handleError);

You can chain the then() and catch() functions, or you can call the
processCompleted parameter separately with a then() function and then, add
a catch() function later. You can also chain promises so that the results of one
promise are returned as another promise. Mozilla has an overview of ES6 promises
at https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Promise.

https://github.com/GettingStartedWithNativeScript
https://github.com/GettingStartedWithNativeScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Building a Featured Application

[76]

So, now that we checked out dialogs and promises, let's resume working on the
application and work on the Declarative UI for this settings screen.

The settings screen Declarative UI
The Declarative UI code is actually compact. So, let's open up the settings.xml
file. We are simply creating a page with two text entry fields and two buttons. Based
on the actual preceding code, you can probably even write the majority, if not all of
the UI, yourself. If you would like to try, I would guess that once you are done with
this little exercise, you can check your awesome code against mine. Functionally, I
would expect them to work in the same way. However, since I will use this screen
to describe a new layout type, the code will not be exactly the same, as I will be
cheating and using this awesome new layout before I have explained it to you. So,
the first item on the page is, yes you got it, a Page component. So, if you remember,
we used the shownModally parameter in the preceding JavaScript and loaded events.
We are assigning them here on the Page component. We also want to set Page.
actionBarHidden to be true, the reason why different versions of NativeScript have
fixed and broken the actionBar component on a modal dialog. So, we are just going
to disable it so that we won't have any issues:

<Page shownModally="shownModally" loaded="loaded"
actionBarHidden="true">

That was simple, and I would guess our code should be similar at this point. Now,
here is where our files probably diverge. You probably used the StackLayout
component as that is the only layout we have covered so far in the last three
chapters. How about covering the awesome GridLayout?

GridLayouts
Now, I will show you the true power of the dark side, GridLayout. Take a look at
the following code:

<GridLayout columns="*,*,*,*" rows="auto,auto,auto,auto"
cssClass="border">

Whoa, what in the world is that? Gibberish? That just plainly looks scary. So, my first
question, what does the asterisk mean? And for the second question, what is auto?
What? You cannot answer those two simple questions? Well, I don't blame you. I will
give you a minute to go read the docs about what those are for. Oh, all right, I will
explain them to you. There goes my awesomely competitive edge as I explain the
arcane parameters of GridLayout.

Chapter 4

[77]

In the preceding GridLayout declaration, I am declaring four columns. Those four
asterisks mean that we should split up the remaining column space equally. In this
case, each column is getting 1/4th of the screen width. On a screen that was 600 pixels
wide, each column would get 150 pixels. Now, the rows, which I set to auto, mean
that each of the four rows will get exactly the required height that the components
in that row needs. In both the columns and rows definitions, I can use an asterisk
(*), an auto, or a pixel number. You can also even mix and match all of them, if I use
100,*,auto,auto,* it would render it as: column 0=100 device independent pixels.
Column 2 and 3 get the width of the largest component that is defined inside its own
column. Finally column 1 and 4 each get half the remaining size.

There is one more advanced technique with the asterisk. You can actually specify
something like *,2*,*, which means that the center column gets two equal widths
for its size. So, on a 600-pixel screen, it would be like you put 150,300,150 for the
values. Now, the next piece would be how we assign the components to each row
and column. Here is the rest of the Declarative UI code:

<Label row="0" colSpan="4" text="Settings" cssClass="title" />
<Label row="1" text="Name: " /><TextField id="name" col="1"
colSpan="3" row="1" hint="Enter your name" text="{{name}}" />
<Label row="2" text="Server: " /><TextField id="server" col="1"
colSpan="3" row="2" hint="Enter a server" text="{{server}}"/>

<Button row="3" col="0" colSpan="2" text="Save" tap="save" />
<Button row="3" col="2" colSpan="2" text="Cancel" tap="cancel" />
</GridLayout></Page>

As you can see, in each of the components, we are declaring a col, row, and
sometimes, a colSpan value. If I did not declare a row or col field, then they, by
default, would be zero. To help visualize this, I created the same settings screen so
that it would have a light blue color for every other column:

Building a Featured Application

[78]

You can see from this screenshot that the Name label is in column zero. TextField
is in column one and has a column span of three. The Server label is in column zero,
row two. Again, TextField has column one and a column span of three. The buttons
are in row three, and each has a column span of two. Using GridLayout, I am able to
layout the dialog box in a clear and clean interface for our users. The reason I chose
to divide the screen into four columns was that I had two buttons. I needed to make
each of them take up half the screen, which meant I needed a number I could divide
by two.

Now, if you get antsy and decide to run the settings screen right now, it won't
exactly look like that. Why? Well, you don't have any of the CSS to make everything
align nicely. Here is the simple CSS:

Label {
 padding: 2; vertical-align: center; horizontal-align: right;
}

.border {
 border-color: black; background-color: white;
 margin: 0;
}

.title {
 background-color: gainsboro;
 font-size:26; font-weight: bold;
 padding: 4; padding-left: 10;
 horizontal-align: stretch;
}

TextField {
 margin-right: 10;
}

Button {
 padding: 2;
}

I added some simple padding, font styling, and margin on some of the layout items
to make it look nicer. It is pretty simple to adjust and make the interface look a bit
sharper.

Now, let's dig into the actual main screen of the application since we have finished
creating the settings screen.

Chapter 4

[79]

Building the main screen
We will start with the code of the application, as it is fairly simple and gives you
some context for the rest of the screen. Then, we will dig into the screen Declarative
UI and finish off with the CSS for the screen.

JavaScript code
The main screen code is straightforward. We need to require the same application
settings as we used in the settings screen to see whether we need to make the settings
screen pop up. Then, we will require the observable array, which holds all our
messages. Then, we will include a file that deals with our communication, which we
will discuss after the screen is done. Let's take a look at the following code snippet:

var appSettings = require('application-settings');
var ObservableArray = require("data/observable-
array").ObservableArray;
var Socket = require("./AjaxSocket.js").AJAXSocket;

Next, we will define the icon array and the message array. Each of the icon values,
such as 0xE0C9, is easily accessible on the icon fonts website. We will discuss more
about the icon fonts later in this chapter when we discuss them in depth. Let's look at
the following code snippet:

var messageIcons = ["", String.fromCharCode(0xE0C9),
String.fromCharCode(0xE85A), String.fromCharCode(0xE0B9)];
var messages = new ObservableArray();
messages.on('change', trackMessages);
messages.push({from: 0, message: "Welcome to Cross
Communicator"});

var socket = new Socket();
socket.on('message', function(evt) {
 newMessage({from: evt.from, message: evt.data});
});

var entry, scrollView, page;

We also want to track whether the message array is changed and run our
own function (trackMessage) on it. Then, we will create an instance of our
communication library and set it to call newMessage when a new message comes
in. Then, we will create a couple of global variables to contain our scrollview,
page, and text entry controls. All in all, the code is so far simple. Wow! We will
need to work on the functions on the main screen. Let's start by exploring the
trackMessage() function first:

Building a Featured Application

[80]

var trackerCounter = null;
function trackMessages(evt) {
 if (evt && evt.action && evt.action !== "add") { return; }
 while (messages.length > 40) {
 messages.shift();
 }
 if (trackerCounter || !scrollView) { return; }
 trackerCounter = setTimeout(resetMessageDisplay,1);
}

As you can see, the trackMessages function checks to see whether it is an add
event. Then, it checks the length of the message queue. We do not want to exceed
the memory on some of the low-memory devices, so we only cache the last 40
messages. Any messages over 40 are discarded. Then, it checks to see whether
the resetMessageDisplay routine is already scheduled to run, and if it isn't, it
schedules it. Let's check out the resetMessageDisplay function next:

function resetMessageDisplay() {
 trackerCounter = null;
 var offset = scrollView.scrollableHeight;
 scrollView.scrollToVerticalOffset(offset, false);
}

As you can see from this, we basically cleared the trackerCounter variable. Then,
we will find out how much scroll room the scrollview parameter has, and then we
will move the scrollView parameter to the end of the display. We want to keep the
display in sync to always show the bottom of a message when any new messages
come in. The next function we will look at is the pageLoaded function:

exports.pageLoaded = function (args) {
 page = args.object;
 entry = page.getViewById("entry");
 scrollView = page.getViewById("scroller");
 page.bindingContext = { messages: messages };
}

This code is pretty simple. We grabbed and assigned the page variable. We used it
to look up the entry and scrollView controls that are on the page and assigned
them to our variables. Then, we set up the binding so that the messages variable
is in the binding context. Now, because of a bug in iOS, we also have to define the
navigatedTo event instead of just including this code in our pageLoaded event, so
we will look at this one next:

exports.navigatedTo = function(args) {
 if (!page) { page = args.object; }

Chapter 4

[81]

 showDialog();
 trackerCounter = setTimeout(resetMessageDisplay,1);
};

In this function, all we do is set up our page variable if it hasn't been already set up
and then call our showDialog routine. Then, we set up resetMessageDisplay to fire
immediately after all the other code that has run. Our showDialog() function is next
in line to be explored:

function showDialog(force) {
 if (!appSettings.getBoolean('setup', false) || force === true) {
 page.showModal('settings', '', function() {
 socket.setHost(appSettings.getString('server'));
 socket.setName(appSettings.getString('name'));
 }, false);
 }
 else {
 socket.setHost(appSettings.getString('server'));
 socket.setName(appSettings.getString('name'));
 }
}

Here is where we use the application settings to see whether we have already saved
our settings. On a new install, we won't have the setup variable set, so the dialog
will automatically show up when the application first runs. Once the dialog is done
running or if the dialog is skipped, we will load the settings and apply them to the
socket class. The next function is how we trigger the settings dialog manually:

exports.settingsTap = function() {
 showDialog(true);
};

In this case, we pass in true to force the dialog to open. Then, the final part of this is
the message delivery. We need to be able to send and get messages to our server:

exports.goTap = function() {
 if (entry.text.length > 0) {
 var data = {from: 1, message: entry.text};
 entry.text = "";
 newMessage(data);
 sendMessage(data.message);
 }
};

function newMessage(msg) {
 if (msg.from < 3) {

Building a Featured Application

[82]

 msg.iconLeft = messageIcons[msg.from];
 }
 else {
 Msg.iconRight = messageIcons[msg.from]
 }
 messages.push(msg);
}

function sendMessage(m) {
 socket.send(m);
}

As you can see from the preceding code, it is simple. We basically are setting up our
screen configuration and how the messages are handled. Now that we have finished
all the code for the main screen, how about we check out the main screen Declarative
UI XML?

Declarative UI
I will start this one in a away different from how I normally present a screen. We will
look at the finished screen first, and then, you can see whether you can surmise the
majority of the pieces I used and how I built the screen. Then, we will discuss each of
the pieces as we build the screen. In this example, I cheated and put a couple more
messages in the message queue to show how it will look when completed. On the
left-hand side is Android, and on the right-hand side is iOS:

As you can see, both platforms look pretty much the same.

Chapter 4

[83]

Main page Declarative UI
Well, let's first dig in to the Declarative UI. Now, the first part of the screen is just
the standard definition. We have a <Page> declaration and then a <ActionBar>
declaration. However, this is where we will learn about menus. Do you see that
vertical ellipsis up there in the right-hand corner of the Android (left screen)? Well,
on an Android device, this is a pop-down menu. You click on it, and it expands and
shows you menu items, as in this screenshot:

This is where we add the access to the settings screen that we just built. However,
on iOS, they have no Nifty pull-down menu. So, on iOS, we will just put the settings
icon (right screen). Now, I could have easily just put the settings icon on both
screens, but I decided to show you how to create menus on Android in this example.
Our code looks like this:

<ActionItem ios:icon="~/icons/ic_settings.png"
android:text="Settings" tap="settingsTap" ios.position="right"
android.position="popup" />

Looking at it, you should see ios.position. It specifies where the ActionItem
parameter will show up on the ActionBar tag on iOS devices. In Android, the
position supports popup, which is what gives us that neat menu. In addition, you
will also see that I prefixed the icon with ios:, which signifies that this parameter
only applies on an iOS device. I did the same thing with the text property that says
settings. We prefixed it with android: to make it only apply on Android devices.
You can add as many ActionItem tags as you want to your ActionBar property.
Then, you can complete it by adding the closing ActionBar tags. This completes the
header part of the page, so we will continue to work on the body part of the page.

Main page body
Take a look at the preceding image again. The next item, if you guess, would be
GridLayout. Yes, the layout you just learned to use on the settings screen. We
chose a GridLayout here, because it can automatically make the main panel use all
(remember the asterisk) the available space and make the entry panel use only the
space it needs (the auto). Our code is really simple: <GridLayout rows="*,auto"
columns="*">. We are asking for two rows and one column of data. Our next piece
of the UI is another new component called ScrollView.

Building a Featured Application

[84]

ScrollViews
Now, if you haven't guessed by its name, it allows us to scroll content either
horizontally or vertically. In our case, we just need to scroll vertically so that the
code looks like this: <ScrollView id="scroller" cssClass="border">. Now,
you might have noticed that we assigned both a cssClass class and gave it an id
variable. We need to be able to manipulate the ScrollView class later, and of course,
it doesn't look as nice without the border. ScrollViews allow you to scroll as much as
you want in the directions you configure, so it is great for content that won't fit inside
the screen.

Looking at our picture, you may have noticed three different text boxes inside
ScrollView. The app can actually handle an unlimited number of those text boxes.
The next component is how we streamline, creating each one of the messages.
There is a component that already does all the hard work for us. It is called the
Repeater. Pretty original name, huh? Bet you cannot guess what it does. OL, so
you did guess. It repeats a child for each item it has. So, its code looks like this:
<Repeater items="{{messages}}">. You can either programmatically assign
an array to the items or use the cool NativeScript binding system, like I did using
items="{{message}}". This means it will be bound to the messages variable.

More about bindings
Using an ObservableArray instance and binding, I made our job a whole lot simpler
as when our message variable is bound to the repeater component, the message
variable will automatically notify the repeater component of any changes to it. This
allows our screen to stay totally in sync with the message array, without us having
to program any additional code. Anytime we add a message, it adds it to the screen,
and anytime we eliminate a message from our message queue, it is removed from
the screen.

Repeaters
The next step of a repeater is to define the child template that it will use to stamp out
for each item in the message array. Now, this code might look a bit complex, but you
have to remember that this chunk of code displays the icon on either side, aligns the
text on either side, and colorizes it to the proper color.

First, we will start out with the complex property <Repeater.itemTemplate>.
Then, we will define the layout. Can you guess what my favorite layout is? It is
<GridLayout columns="auto,*,auto" rows="auto">.

Chapter 4

[85]

In our case, we are defining the grid, a single row, and three columns. The first and
third columns are my columns for icons. They are set to auto size. If there is no icon
in the column, then they would use no space. The second column, which is for the
actual message, is set to use all the remaining column width.

For the first column, the code to actually display the icon might look a little strange:
<Label col="0" cssClass="{{ from === 1 || from === 2 ? 'noicon' :
'icons larger'}}" text="{{ iconleft }}"/>. We will explain exactly how it
displays a picture even though it's declared as a text label when we dig into the CSS
code of this screen. I will, however, dig into the weird logic code inside the binding
brackets. The binding system actually allows you some limited calculations. So, I'm
using a ternary operator to check what the value of from parameter is. If it is 1 or 2,
then I use noicon; otherwise, in all other cases, I return icons larger as my CSS
classes. Now, I could have used this logic inside the JavaScript and just used a simple
variable name. However, I did it here to show you that it is possible to have dynamic
changes in your Declarative UI.

Following the icon, we need to display the text message <TextView col="1"
editable="false" text="{{ message }}" cssClass="{{ from === 1 ?
'rightmessage message' : from === 2 ? 'errormessage message' :
from === 0 ? 'sysmessage message' : 'leftmessage message' }}"
textWrap="true"/>. It also uses a couple of ternary operators for its CSS class
definition. The class definitions are what give the messages a color.

Finally, we have the column that displays the icons on the right-hand side: <Label
col="2" cssClass="{{ from === 1 ? 'blue icons larger' : from === 2 ?
'red icons larger' : 'noicon'}}" text="{{ iconright }}"/>. As you can
see, this is just like the first icon. We just use a ternary operator to choose the proper
CSS class.

Following that code, we just close the GridLayout, Repeater.template, Repeater,
and finally, the ScrollView components.

Main-body footer
The next bit of code deals with the entry portion of the screen. Looking at the
preceding images again, I am sure you can guess what layout I would choose? How
about the number of rows and columns? If you didn't get <GridLayout row="1"
rows="*" columns="*,auto" cssClass="border">, then repeat after me.
"GridLayouts are AWESOME!" OK, back to the subject! We only need one row. We
need two columns, one for the entry box and one for the cool button you can click
to send our message. Taking all the bits of code scattered in this section and then
putting it together looks like this:

Building a Featured Application

[86]

<Page id="page" loaded="pageLoaded" navigatedTo="navigatedTo">
 <Page.actionBar>
 <ActionBar title="Cross Communicator">
 <ActionBar.actionItems>
 <ActionItem ios:icon="~/icons/ic_settings.png"
 android:text="Settings" tap="settingsTap"
 ios.position="right" android.position="popup" />
 </ActionBar.actionItems>
 </ActionBar>
 </Page.actionBar>
 <GridLayout rows="*,auto" columns="*">
 <ScrollView id="scroller" cssClass="border">
 <Repeater items="{{messages}}">
 <Repeater.itemTemplate>
 <GridLayout columns="auto,*,auto" rows="auto">
 <Label col="0" cssClass="{{ from === 1 || from === 2
 ? 'noicon' : 'icons larger'}}" text="{{ iconleft }}"/>
 <TextView col="1" editable="false" text="{{ message
 }}" cssClass="{{ from === 1 ? 'rightmessage message' :
 from === 2 ? 'errormessage message' : from === 0 ?
 'sysmessage message' : 'leftmessage message' }}"
 textWrap="true"/>
 <Label col="2" cssClass="{{ from === 1 ? 'blue icons
 larger' : from === 2 ? 'red icons larger' :
 'noicon'}}" text="{{ iconright }}"/>
 </GridLayout>
 </Repeater.itemTemplate>
 </Repeater>
 </ScrollView>
 <GridLayout row="1" rows="*" columns="*,auto"
 cssClass="border">
 <TextField id="entry" hint="Type a message"/>
 <Button id="go" col="1" text="" tap="goTap"
 cssClass="icons sendbutton"/>
 </GridLayout>
 </GridLayout>
</Page>

How about we run the screen now and see what it looks like:

Chapter 4

[87]

Wow, that looks a lot different from our preceding finished screen. No icons, no
borders, no colorings, lines under each text, everything is left aligned, and even the
bottom button is wrong. Can you guess why?

The main-page.css file
If you guess CSS, you would be correct. Let's proceed and make it look pretty. We
will actually need to create a main-page.css file, as this file does not yet exist. The
main-page.css file has several rules that we use to make things look pretty. We are
primarily going to define padding, colors, and font sizes. So, the first thing we will
do is declare rules for the GridLayout and Repeater components:

GridLayout, Repeater {
 padding: 2;
}

Building a Featured Application

[88]

We just wanted is 2-pixel padding on both of them. The next thing we need to define
is the larger rule, which we used with some of the columns to make them larger in
the texts:

larger {
 font-size: 22;
}

We will now declare the default rule for all messages:

.message {
 padding: 5; margin: 2;
 font-size: 12; border-radius: 10;
}

You can see we just set some padding, the margin, the default font size, and finally,
the border radius, which is what makes the cool curved border. Then, we will declare
the colors and alignment for the four different message types:

.rightmessage {
 background-color: skyblue; color: blue; horizontal-align:
 right;
}
.errormessage {
 background-color: indianred; color: white; horizontal-align:
 right;
}
.leftmessage {
 background-color: cornsilk; color: black; horizontal-align:
 left;
}
.sysmessage {
 background-color: cadetblue; color: white; horizontal-align:
 left;
}

That was pretty straightforward, and now, all the messages have awesome colors.
The next chunk of CSS code deals with the width and colors of the icon columns:

.blue {
 color: blue;
}
.red {
 color: maroon;
}
.noicon {
 width: 90;
}

Chapter 4

[89]

As you can see, we just set the color we want the icons to be, and we also set the
spacing for when there is no icon, since we don't want the messages to ever hit the
other side of the screen. Finally, we need to execute the CSS for the send message
button at the bottom of the screen:

.sendbutton {
 margin: 2; width: 40; height: 40;
 border-radius: 20; background-color: gainsboro; color: black;
}

With this one rule, we set the button width and height to be the same size. We set the
color and the border radius to make it into a circle.

We added a lot of simple CSS, setting the colors, padding, margins, and alignment.
With all these small additions, we got the screen from a plain one to a nice colorful
one. The last piece of this puzzle is the main application-wide CSS. We could have
put the final two rules we are putting in the app.css file here. However, they really
are better since they are global rules.

Application CSS
Start by opening your application-wide CSS, that is, the app.css file. We will rewrite
it. First, we need to delete everything in the file. Then, we will add two items that
should be globally available. The first rule we will add is a border rule. If you recall,
we used the border rule in our Declarative UI to declare that the item had a border.
We will define it as shown in the following code snippet:

.border {
 border-color: black; border-width: 1; margin: 5;
}

Pretty simple, anytime and anywhere we use the class border, that element will have
a black border that is 1 pixel wide with a margin of 5 pixels. The next application-
wide CSS we will add is the icons rule:

.icons {
 font-family: MaterialIcons-Regular, Material Icons;
 vertical-align: center;
}

Building a Featured Application

[90]

For the icons rule, we are declaring it to be a font. We want this font to vertically
align itself to the center of the column it is in. Now, this font does not exist by default
on either platform. That is right! All those neat little pictures are created by this font.
We are using this font since all fonts can easily scale and then you do not have to
worry about different screen resolutions or sizes. If you can do it with a font instead
of a graphic file, it normally makes more sense.

Fonts
Google maintains a large number of very nice fonts (https://www.google.com/
fonts) that can be easily used for no charge in any of our applications. The one we
will use for our application is the one that has all sorts of icons, some of which we
will use to make our app look a lot nicer or make our app be a bit more consistent
with other apps on our devices. You can download the Material Icon font from
Google's GitHub repo at https://github.com/google/material-design-icons/
blob/master/iconfont/MaterialIcons-Regular.ttf. Then, click on the RAW
link, and it should download the font for you.

Once the file has finished downloading, you will need to create a new folder called
fonts in your app folder, like we discussed in Chapter 2, The Project Structure. Then,
copy the MaterialIcons-Regular.ttf font file into that app/fonts folder.

On Android and iOS, they both are currently able to auto-register the font by the
name in the font-family declaration. If you look at the font-family declaration, it
says MaterialIcons-Regular. The declaration value needs to be named identically
as the font filename without the .ttf extension. The second declared font Material
Icons is the actual internal name of the font. iOS needs to link the auto-registered
font to the font you are wanting to use when you use the icon rule. If you double-
click on the actual font file, at the top of the font, you should see Material Icon.
So, we will declare the icon rule to have two font declarations: one for Android
and iOS (which it uses to load it) and the second for iOS. When iOS does not see
the first font in its loaded fonts, it then checks the following fonts in the list, which,
of course, it will then match with the font that it loaded. This is the simplest way to
use fonts on both iOS and Android. Frequently, the actual font name will match the
filename. Then, you only need to put the single font declaration that will work for
both platforms.

https://www.google.com/fonts
https://www.google.com/fonts
https://github.com/google/material-design-icons/blob/master/iconfont/MaterialIcons-Regular.ttf
https://github.com/google/material-design-icons/blob/master/iconfont/MaterialIcons-Regular.ttf

Chapter 4

[91]

Icons
Just like Google offers a bazillion fonts, they also have a large number of icons in
the Material Icon font, which you can see and download also as images. Since
the ActionItem instance does not allow us to change the font, I had to use an actual
graphic on iOS. In this case, I looked through the list of icons available, found a
settings icon at https://www.google.com/design/icons/#ic_settings, then
downloaded the 24dp black pngs. After opening up the ZIP file, you should see both
an iOS and an Android folder. I created a new app/icons folder and then copied the
three images out of the iOS folder and put them in the new apps/icon folder.

With all these changes, the app now actually looks proper. The final piece of the
puzzle is the code to communicate with the server.

Communication with the server
The code we use will use to talk to the server is the nonvisual component
XMLHttpRequest. This component is actually already included in the global
namespace, since that is where most normal JavaScript expects it. We will create a
simple class wrapper around it to communicate with the server. The first part of the
class is just the initialization:

var AJAXSocket = function() {
 this._host = null;
 this._counter = 0;
 this._clientId = Math.floor(Math.random()*100000);
 this._from = "Unknown_"+this._clientId;
 this._messageHandler = [];
 var self = this;
 setInterval(function () {
 self._handleListener();
 }, 250);
};
exports.AJAXSocket = AJAXSocket;

https://www.google.com/design/icons/#ic_settings

Building a Featured Application

[92]

As you can see, we set up a couple of internal variables, and then we made a
listener function fire every 250 milliseconds to ask the server for any new updates.
This is not very battery or bandwidth efficient, but with some work, it could be made
a lot smarter. Then, we made sure to assign this class to the exports so that anything
requiring this module will be able to use our cool class.

The next piece of code is just a couple of simple setters. We need to be able to
configure the AjaxSocket class from outside the code:

AJAXSocket.prototype.setHost = function(host) {
 this._host = "http://"+host + "/direct/";
};

AJAXSocket.prototype.setName = function(name) {
 this._from = name;
};

The next piece is the function to send a message to the server. We will check
and set up the URL we are sending our message to. Then, we will create a new
XMLHttpRequest request, configure it, and send our message via the server:

AJAXSocket.prototype.send = function(msg) {
 if (!this._host) { return; }
 var url = this._host + "send/";
 if (this._clientId) { url += "?clientId="+this._clientId;}
 var self = this;
 var request = new XMLHttpRequest();
 request.onload = function() {
 try {
 self._handler("send", request.responseText);
 } catch (e) { }
 };
 msg.from = this._from;
 request.open("POST", url, true);
 request.send(encodeURI(JSON.stringify({from: this._from,
 message: msg})));
};

Chapter 4

[93]

One thing I will point out in this function is that we treat the response we get back
from a send request as a valid message. The server will return responses on a check
and a send request.

Now that we have the ability to send messages, we need to be able to check for new
messages and receive them easily. Our next code is the listener function that we
scheduled to be every 250 ms in the class constructor:

AJAXSocket.prototype._handleListener = function() {
 if (!this._host) return;
 var self = this;

 var url = this._host + "get/";
 if (this._clientId) {url += "?clientId="+this._clientId;}

 var request = new XMLHttpRequest();
 request.onload = function(d) {
 self._handler("get", request.responseText);
 };
 request.onerror = function(d) {
 self._handler("error", request.status);
 };

 request.open("GET", url, true);
 request.send();
};

This is a fairly simple function like the sender. We verified and set up the URL. Then,
we set up the two functions that will get the responses and then fire off our request
to the server.

The next piece of this communication puzzle is the message-handling function,
which handles all responses back from the server:

AJAXSocket.prototype._handler = function (event, result) {
 if (!result) return;
 var data = {};
 if (result.length > 0) {
 try {

Building a Featured Application

[94]

 data = JSON.parse(result);
 }
 catch (e) { }
 }
 if (event === "get" || event === "send") {
 if (data && data.clientId && this._clientId !== data.clientId)
 {
 this._clientId = data.clientId;
 }
 for (var i=0;i<data.messages.length;i++) {
 var from = 3;
 if (data.messages[i].from === "ME") continue;
 if (data.messages[i].from === "SERVER") {
 from = 2;
 } else {
 data.messages[i].message = data.messages[i].from +": " +
 data.messages[i].message;
 }

 this.handleMessages({from: from, data:
 data.messages[i].message});
 }
 } else if (event === "abort" || event === "error") {
 this.handleMessages({from: 2, data: event});
 }
};

We will check the result. If there is no result, we don't do anything. Then, we
attempted to parse the result back into a JSON object. Next, we checked the type
of event; a get or send event means it has some messages. We then checked to
see whether the server is reassigning our clientId parameter; if so, we switch
to it. Finally, we looked through each message that just came in and assigned it a
from number so that our display looks correct. If the message is an abort or error
message, we just spit it out to the screen as is.

Chapter 4

[95]

The final piece of this code is the event handling, which is extremely simple:

AJAXSocket.prototype.handleMessages = function(msg) {
 for (var i=0;i<this._messageHandler.length;i++) {
 this._messageHandler[i](msg);
 }
};

AJAXSocket.prototype.on = function(eventName, fun) {
 this._messageHandler.push(fun);
};

Basically, all handleMessages does is loop through any listeners and send our
message to them, and our on function just adds new listeners to the listeners array.
A couple of things missing from this AJAXSocket class would be the getters for the
name and server properties that we have setters for, and an off request to remove a
handler. For our example, we won't use those functions, so they are not included, but
feel free to extend this class to add that functionality if you need it for your project.

Trying out our application
Are you ready! Our application is now fully ready for you to actually test
its functionality. It not only has a settings screen, but also has the ability to
communicate with a server to exchange messages. So, the only piece missing is a
server. Guess what, we have one of those too. Let's check out the next piece and get
the communication server up and running.

The server
The server code itself won't be discussed in this book as it is not relevant to learning
NativeScript. It is in JavaScript, so feel free to look at it. It is downloadable from the
same example repo that contains all the example in this book, located at https://
github.com/GettingStartedWithNativeScript. In the event you want to run
your own server or, for some reason, the test server on nativescript.rocks:3000
is not running, the following instructions will help you set up and connect to your
own server.

https://github.com/GettingStartedWithNativeScript
https://github.com/GettingStartedWithNativeScript

Building a Featured Application

[96]

Setting up your own server
To set up the server follow the given steps:

1. Once you have downloaded the ZIP file and extracted the server or used
Git to clone a copy, you will just need to use a npm install command in its
directory. This will install everything that the server needs to work. To start
your server, you just need to type node index.js, and the server process
will start up and start listening on port 3000 of your machine. As you can see
from the following screenshot, I cloned the repo from GitHub, did an npm
install and then a node index.js install. It then printed out all the IP addresses
on my machine.

2. You can now open up a browser and type localhost:3000 in your URL bar.
You will see the server in a browser interface.

3. The next step is to make our crossCommunicator app talk to the cool server.
This is where things might get a little tricky. Let's take a look at the following
description:

 ° On the iOS emulator, you can just use localhost:3000 for the
server. It is simple. However, if you are using an Android emulator
or a physical phone, then each will have its own IP address.

Chapter 4

[97]

 ° For the Android emulator, what you will need to do is run adb
devices (after the Android emulator is running) from the terminal to
see what network address it is using. On my machine, adb devices
comes back with 192.168.56.100:5555. If you are using a physical
Android phone, you need to go to Settings | About | Status and
scroll down until you see the IP address.

 ° On a physical iOS device, you need to go to Settings | Wi-Fi and
then check the DHCP or Static tab for the current IP address.

4. Once you have the device or emulator IP address, you need to match it. Look
at the list of IP addresses that the server process printed out that it is listening
on. Whichever IP address matches the first three groups of numbers. For
example, if you look at the preceding server install screenshot and then the
following example adb devices screenshot, you will see that the second
server IP address is the VirtualBox IP address 192.168.56.1. This is the
address that matches the Android emulator's IP address 192.168.56.100 that
adb devices printed out. So that server IP address is what you want to use
for the server. So, in my case, for my application settings, I would then put
192.168.56.1:3000 as the server and Nathanael as the name.

Trying crossCommunicator out.
You should be able to do a nativescript run android –emulator or
nativescript run ios -mulator and then have the application start up. Once you
have the server settings plugged into your app, you should be able to send and get
messages from the browser and the iOS and Android platforms (basically, as many
devices as you want to hook up to your server).

Building a Featured Application

[98]

Summary
Wow, we covered a lot in this chapter. We explored the different types of layouts
and dialogs, and learned all about promises, icons, and fonts. On top of all that cool
knowledge, we built a fully running cross-platform communication system. Pretty
awesome and we are only on Chapter 4, Building a Featured Application. Stay tuned!
We will cover how to add, find, and use third-party modules in Chapter 5, Installing
Third-Party Components, to make our application even better.

[99]

Installing Third-Party
Components

NativeScript contains a wide range of built-in components. However, sometimes,
you need things that are not built into the default NativeScript components. This
is where a third-party plugin or component can come into play. A plugin can
encompass any part of an application. It can be anything from simple JavaScript code
that talks to the camera, to something much more complex, such as 3D charting.
A plugin can be something as simple as a simple JavaScript code function or as
complex as a combination of a JavaScript library and multiple compiled libraries for
each specific platform.

In this chapter, we will cover the following topics:

• Places to find third-party components
• How to install a third-party component
• Using the third-party components in a cross communicator

Places to find third-party components
Currently, there are three major places to find components. Each place has its own
strength and weakness. The first one that we will explore is the official Telerik
plugin site.

Installing Third-Party Components

[100]

The Telerik plugin site
You can find the Telerik plugin site at http://plugins.telerik.com/
nativescript. This site allows different developers to list any of their available free
plugins. You can search or browse the site and find many different plugins built for
NativeScript.

npmjs.com
The next site is https://npmjs.com, and it actually contains common modules and
plugins for a wide range of products, such as Node.js, jQuery, Bower, Grunt, and
many more JavaScript-based products. It is the most popular JavaScript repository.
On npmjs.com, to find plugins for NativeScript, you can just type NativeScript in
the search box and click on the Search button. It will list all the items that support
NativeScript. You should also see a couple of listings for the official NativeScript
libraries that make up NativeScript in the list. This is because npm is what you used
to download and install NativeScript in the first place.

The NativeScript unofficial plugin list
The third site is a simple plugin list. It lists the name, what platforms it supports,
and what the plugin does. It links to the location of npmjs.com and/or github.
com to download the plugin. The unique thing that this list offers is a simple list that
also quickly, at a glance, lists all the platforms a plugin supports. It can be found at
http://nativescript.rocks/plugins.

How to install a third-party plugin
component
This is actually one of the more simple things to do in most cases. We will install
three different plugins. The first component is just a simple plugin to vibrate the
phone, which we will use for any new messages. Then, we will install a more
complex plugin that we will use for real-time communication. Finally, we will install
a visual component. By choosing these three examples, I hope to show you a small
subset of the available features that you can easily install to gain new functionality
for your application.

http://plugins.telerik.com/nativescript
http://plugins.telerik.com/nativescript
https://npmjs.com
npmjs.com
npmjs.com
github.com
github.com
http://nativescript.rocks/plugins

Chapter 5

[101]

Installing the vibration plugin
By exploring any of those three plugin sites, you should find a plugin called
nativescript-vibrate. This is the plugin we will use to handle the vibration. To
install a plugin, you need to be connected to the Internet. Then, all we need to do is
simply type nativescript plugin add nativescript-vibrate in the root project
directory. This will automatically download and install all the code for the vibration
plugin into the main project node_modules folder. This is a pure JavaScript plugin,
so if you navigate to the node_modules | nativescript-vibrate folder, you can
easily see how it works.

You don't normally want to edit a plugin's source code directly in this folder, because
when you reinstall the plugin, you will lose all your changes. If you actually need to
make a change to a plugin, it is much better to fork the original repo and then install
the plugin from your own forked repo.

A forked repo means you make a copy of the source code that matches
the source code as it exists in that moment of time. When the original
author continues editing the source, their code will go in one direction,
and if you edit your copy of the source, your copy goes in the other
direction. This concept is just like a fork in the road. The nice thing about
source control is that you can typically easily merge forks.

Installing the webSockets plugin
Again, if you search any of the three plugin sites, you should find a plugin called
nativescript-websockets. To install this plugin, you simply type nativescript
plugin add nativescript-websockets in the root project directory. This will
also automatically download the plugin and install all the files where they need to
be located. This plugin also includes a compiled library for both Android and iOS,
which gets built into your application automatically.

Installing the Telerik SideDrawer plugin
The installation of this plugin is identical to the other two. We can search for
NativeScript-Telerik-UI and then install it via nativescript plugin add
nativescript-telerik-ui in the root project directory. As usual, you must be
connected to the Internet for the first time so that it can be downloaded and installed.

Installing Third-Party Components

[102]

Using third-party components
Once we have all the plugins installed, the next step is to actually use each of the
plugins. We will need to open your main-page.js file and add some code to use the
plugin inside your application's main page.

Using the vibration plugin
We will start with this cool feature first. We want to make the device vibrate when
a new message comes in. First, we just need to add the code to load the vibration
component. Open the main-page.js file. At the top of the file near the other
required statements, you need to add a simple new require statement, var vibrate
= require('nativescript-vibrate');. Since all the messages already go through
a central newMessage function, let's add this code at the very bottom of this function:

if (msg.from !== 1) {
 vibrate.vibration(100);
}

This code simply checks to see that the message doesn't come from us. After all,
we don't really want to make the phone vibrate on our own messages. It then
uses the vibrate class that we required a couple of sentences ago and runs the
vibration command. The device takes 100 milliseconds to vibrate. Just by adding
and using a plugin, we quickly added a nifty notification feature. Pretty cool, huh?
Let's now start tackling the bigger plugin. We will replace our simple Ajax-based
communication with real-time websockets.

Using Websockets
Our Ajax class was a cool place to start, and it gave you a concrete example of how
to use the HTTP class. However, it is not battery or server friendly, and it has to keep
creating and opening a new connection to the server and then asking the server,
"Hey, do you have any messages for me?" Websockets was designed to allow you
to open a connection to the server once, which just stays open. Then, either side can
use this connection to send messages to the other side. This is not only vastly more
reliable, but also battery and server friendly and, best of all, totally real time.

To switch and use real-time websockets, we will create a small wrapper around
websockets to make it so that we can use either Ajax requests or websockets. This
way, you can easily play with either to do any additional experimenting easily.

Chapter 5

[103]

So, replace var Socket = require('AjaxSocket') with var Socket =
require('WebSocketWrapper'). This will load our new wrapper for websockets
after we create it. If you want to play with the Ajax socket again, you just need to
switch this one line of code back. The WebSocketWrapper code will be similar to the
AjaxSocket library. We want to maintain the same function interface so that we can
use either just by acquiring it.

First of all, we need to create a new file called WebSocketWrapper.js, and then, we
need to add the code to load the websocket plugin. So, the first line of code would
be var WS = require('nativescript-websockets');, as it loads the websockets
component that we installed earlier in the chapter. Then, we need to create our class,
which should look like this:

var WebSocketWrapper = function() {
 this._host = null;
 this._backoff = 100;
 this._timeoutId = null;
 this._clientId = null;
 this._from = "Unknown_"+Math.floor(Math.random()*100000);
 this._messageHandler = [];
 this._websocket = null;
 this._errorCount = 0;
};

As you can see, this looks similar to our Ajax socket class. The differences really have
to do with us adding a back-off ability to the reconnect code for websockets in the
case of errors. Back-off means that if it fails to connect (or gets disconnected), rather
than retrying immediately all the time, it slowly lengthens the delay between each
of the connection attempts. If it was a single glitch, you would then be connected
immediately. However, when you enter a dead zone, it will lengthen each additional
attempt to connect so that your battery life is saved.

Next, we need to add the same setters, setHost and setName:

WebSocketWrapper.prototype.setHost = function(host) {
 this._host = "ws://"+host;
 if (this._websocket && this._websocket.isOpen()) {
 this._websocket.close();
 }
 this._openSocket();
};
WebSocketWrapper.prototype.setName = function(name) {
 this._from = name;
};

Installing Third-Party Components

[104]

As you can see, setName is exactly the same as we had in the Ajax library, and
setHost only has a couple minor changes. The first change is to use ws:// instead
of http:// as ws denotes websockets. The second change is to close the existing
websocket, if it is open. Finally, we need to actually open a new websocket
connection when the host is changed. The next piece of code we need to add is the
send function:

WebSocketWrapper.prototype.send = function(msg) {
 if (!this._websocket) { return; }
 var message = {from: this._from, message: msg};
 if (this._clientId) {
 message.clientId = this._clientId;
 }
 this._websocket.send(JSON.stringify(message));
};

Wow, this code is a lot smaller than the Ajax version. The reason is because our
websocket is already open, and all we have to do is send the message to the server
in the format the server expects. In our case, the message is a simple JSON structure.
The last function that we have to add to match the same function interface is the on
function:

WebSocketWrapper.prototype.on = function(eventName, fun) {
 this._messageHandler.push(fun);
};

This code is identical to what we used in the Ajax socket wrapper. All we are doing
is pushing our event function into the event queue the same way. With these four
functions, we now have a library that contains the exact same function interface
as the Ajax socket library. This means it is functionally compatible. However, we
still have to create some of the internal functions such as _openSocket, which we
referenced from the setHost function. So, let's look at these created functions next:

WebSocketWrapper.prototype._openSocket = function() {
 var self = this;
 // This function does back-off re-connection
 var retryConnection = function() {
 // If we already have one scheduled; then we don't need
 // to do anything more.
 if (self._timeoutId) return;

Chapter 5

[105]

 // The actual function that opens up the websocket
 // that gets scheduled in the future
 self._timeoutId = setTimeout(function() {
 self._timeoutId = null;
 self._websocket.open(); // Open Websocket
 }, self._backoff);

 // Take our current back off time, and add random amount
 // up to 1 second of time
 self._backoff += Math.floor(Math.random()*1000);

 // set the max back off time to be 10,000 milliseconds.
 if (self._backoff > 10000) {
 self._backoff = 10000;
 }
 };

 // Create a new websocket
 this._websocket = new WS(this._host);

 // Create a handler for any new messages that come in.
 this._websocket.on('message', function(socket, msg) {
 self._handler(msg);
 });

 // This gets called when the websocket is successfully opened
 // We use it to reset the back-off and error counts.
 this._websocket.on('open', function() {
 self._errorCount = 0;
 self._backoff = 100;
 });

 // On any errors, we only want to print the first error.
 this._websocket.on('error', function(socket, msg) {
 self._errorCount++;
 if (self._errorCount === 1) {
 self._handleMessages({from: 2, data: msg});
 }
 });

Installing Third-Party Components

[106]

 // If the socket is closed, and it isn't a normal close
 // then we need to run reopen the connection
 this._websocket.on('close', function(socket, code) {
 if (self._websocket === socket && code !== 1000) {
 retryConnection();
 }
 });

 // Open our web socket.
 this._websocket.open();
};

Now, this function is fairly large, but the majority of the code actually is used for
our cool back-off ability to recover a broken connection without wasting a lot of
battery. It also has a little extra code to report any errors in the connection. In the
preceding code, we also added an inner function called retryConnection, which
automatically schedules a function sometime randomly in the future so that each
time it fails, it takes a bit longer to try again. Technically, if we wanted to make this
function simpler, the only code that is actually needed to make everything work in
the _openSocket function is as follows:

 this._websocket = new WS(this._host);
 this._websocket.on('message', function(socket, msg) {
 self._handler(msg);
 });
 this._websocket.open();

As all we actually need is to create a new websocket, set up the message handler and
then finally open the connection. For better battery life and additional reliability,
having the extra code that allows back-off to reconnect is used. The next function we
need to create is our message handler, which is aptly called the _handler function. It
looks like this:

WebSocketWrapper.prototype._handler = function (result) {
 // If we have no result; then just exit.
 if (!result || !result.length) return;

 // Attempt to parse the JSON packet
 var data = {};
 try {
 data = JSON.parse(result);
 }
 catch (e) { }

Chapter 5

[107]

 // Commands from Server
 if (data && data.command) {
 switch (data.command) {
 case "setClient": this._clientId = data.clientId;
 break;

 }
 return;
 }

 // Any messages from me, we just ignore since we already
 // Handle it internally before sending it to the server.
 if (data.from === "ME") return;

 // Figure out who the message is from.
 var from = 3;
 if (data.from === "SERVER") {
 from = 2;
 } else {
 data.message = data.from +": " + data.message;
 }

 // Now that we have our message all setup, trigger the event
 this._handleMessages({from: from, data: data.message});

};

This function is a bit more complex than our Ajax version. The reason for this is that
it was designed to allow us to extend the protocol easily to allow you to send images,
sound, and pretty much anything else you want. It also has a command channel
that allows the server to send information for the program to handle without any
user involvement. In this case, clientId is actually set from the server rather than
generated randomly in the Ajax version. You can now easily enhance this program
and server to allow pretty much anything you want to transfer. We are almost done
with this. The _handler function calls _handleMessages, so we need to create this
function next:

WebSocketWrapper.prototype._handleMessages = function(msg) {
 for (var i=0;i<this._messageHandler.length;i++) {
 this._messageHandler[i](msg);
 }
};

Installing Third-Party Components

[108]

This code is also identical to the Ajax socket library. It goes through every
registered event listener and calls it with the new message. The final step in
our wrapper is to export it, so the final line of code will be module.exports =
WebSocketWrapper;. This line of code allows us to use the created class when we
execute the require('WebSocketWrapper'); method. It was pretty simple to wrap
the websockets for use in our application. Let's proceed to add the final plugin to our
application.

Using Telerik's side drawer
Now, a visual plugin is used differently than a non-visual plugin. In the preceding
two cases, we used require to load the component and then used that component.
To use a visual plugin, we open the Declarative UI file in which we will use it. We
need to open the main-page.xml file and make some changes to it. First, on the very
first line, that is, the Page declaration line, we will add xmlns:tsd="nativescript-
telerik-ui/sidedrawer" to the declaration. This addition tells NativeScript that
the tsd namespace is the side drawer JavaScript.

The tsd namespace is just a short name for Telerik Side Drawer. We can
name this namespace according to our wish. This name is used so that
the XML parser knows that RadSideDrawer is actually associated with
the code in the nativescript-telerik-ui | sidedrawer file.

When NativeScript loads this Declarative UI file, it will see that declaration and
automatically load the sidedrawer.js file. The next thing we will do is add the </
Page.ActionBar> statement right after the closing, and before the <GridLayout …>
statement, we will add the following declarations:

<tsd:RadSideDrawer title="crossCommunicator" id="sidebar">
 <tsd:RadSideDrawer.drawerContent>
 <StackLayout backgroundColor="#FFFFFF">
 <Label text="Welcome to crossCommunicator" />
 <StackLayout height="1" backgroundColor="#c7c875"/>
 <Label text="The websockets library on Android is Copyright
 (c) 2010-2012 Nathan Rajlich"/>
 <Label text="The websockets library on iOS is Copyright (c)
 2014 Zwopple Limited"/>
 <Label text="The NativeScript websockets library is
 Copyright (c) 2015 Master Technology" textWrap="true"/>
 </StackLayout>
 </tsd:RadSideDrawer.drawerContent>
<tsd:RadSideDrawer.mainContent>

Chapter 5

[109]

Then, at the end of the file, right before the </Page>, we will add the following lines
of code:

</tsd:SideDrawer.mainContent>
</tsd:SideDrawer>

The RadSideDrawer class actually wraps our content, so that is why we
added the declarations around our existing content. However, the key piece is
<tsd:RadSideDrawer>. It causes the Declarative UI to instantiate RadSideDrawer
from the tsd namespace file. If the node_modules | sidedrawer.js file had
more components than just the side drawer in it, then you could also execute a
<tsd:someOtherComponent> method. This would create the someOtherComponent.
These components can be created just like any other native components. They
are all treated exactly the same way, other than the namespace prefix, so that the
Declarative UI knows where to get the component from.

The Telerik side drawer has two parts: the actual drawer that is hidden until shown
and then the main content part. We put everything we want in the side drawer
inside the drawerContent declaration and then put all the normal main content in
the mainContent declaration. The nice thing about the Telerik side drawer is that
you can create complex layouts in the drawer just as you can in the main content
area. The next time you run your application, you can now pull from the left-hand
side of the screen, and you will see a simple side menu that looks like this:

Installing Third-Party Components

[110]

Easily using the components
As you can see, it is easy to use both visual and code-only components. They all
are installed exactly the same way using the nativescript plugin add <plugin
name> command. Depending on the type of component, you use the command using
var myName=require(<plugin name>); and/or by telling the Declarative UI about
the location of the xmlns:myname="node_modules/myname" component. After that,
the code is used identically, as if you had written the code yourself.

Useful third-party components
Now that you have seen how easy it is to add plugins, you might also try adding
sound effects using the cool nativescript-sound plugin or adding a database
to save all your chats using nativescript-sqlite. Perhaps, add Google Maps
so that you can send coordinates and have them show up on a map using the
nativescript-google-sdk plugin. There are several plugins, meaning that you
can add several features and experiment with them on your own communication
platform. If you get rich making the next generation chat platform, you are more
than welcome, at any point in time, to send me any money you want to donate!

Summary
We covered a lot in this chapter. We not only made the device vibrate but also
added real-time communication to the communication app. We set up the code so
that we can play and extend the application easily. You also learned how to install
any of the third-party components. Depending on your application, at a minimum,
you will probably use at least one of the third-party components or the side drawer
in your own awesome application. As you can see, there are a lot of third-party
functionalities that you can add to your app with minimal work.

Hang on! We will next look at all the different device dependencies. In the next
chapter, you will understand how to make your application as device independent
as possible.

[111]

Platform Differences
Since NativeScript wraps components on each of the platforms in a consistent
fashion, there are some differences between each implementation. The actual
underlying native components are implemented differently by Apple and Google
engineers. You will understand how to deal with the differences in platforms and
with the differences in devices on each platform.

In this chapter, we will cover the following topics:

• Android and iOS differences
• Code differences
• Platform class
• Declarative UI
• Platform- and device-specific files
• Screen size differences
• Device differences

Android and iOS differences
Since each of the platforms is implemented by totally different teams, each platform
has its own particular awesome and horrible behavior. When possible, NativeScript
wraps them all up and attempts to make a cohesive whole that works in a similar
way on both platforms. This means for the most part, the component will work
identically, but there can be discrepancies, which you may have to take into
consideration. We will look at a couple of differences in depth.

Platform Differences

[112]

The soft keyboard
One difference that you might have already noticed in our crossCommunicator
application is that on Android, when you click on the text entry box and the soft
keyboard pops up, the message log part of the screen automatically shrinks and
the text entry box is still visible. This is something that Google engineers built into
Android. We get this awesome behavior for free. However, on iOS, when the soft
keyboard appears, it just goes over everything on the bottom part of the screen.
In this case, we get this horrible behavior for free on iOS. Fortunately, it is easy
to work around this issue. We can install a cool plugin called NativeScript-
IQKeyboardManager. We can easily install this plugin the same way as the other
plugins we installed. The documentation for this awesome plugin is at https://
www.npmjs.com/package/nativescript-iqkeyboardmanager. It wraps up a
technique to move the text entry field into view on iOS devices. This will allow us to
have our app work in the desired way on both platforms.

The Page.loaded event
Another thing that struck me is that in Chapter 5, Installing Third-Party Components,
we created a showDialog function, but you will notice that we called it from the
Page.navigatedTo event. When I first created the application, I had it open from the
Page.loaded event, as the loaded event makes a lot more sense to me for opening
the settings dialog. The application ran perfectly on Android, and life was good. I
copied it to the iOS, and it crashed immediately. Life was not so good anymore.

After spending a bit of time examining the error call stack, I figured out in the Page.
loaded event on iOS that when an event is fired, the frame information is not fully
built. The page.showModal() call inside our showDialog function requires access
to the frame. When you try to do anything that requires access to the frame, it will
fail. In this specific case, it totally crashed the application. The solution was to move
the settings dialog code to the final page event. This way, the frame information was
fully built.

This also affects executing code such as frame.topmost().getViewById('someId')
from the Page.loaded event since the frame is not fully set up on iOS. If you need to
find a component by ID, use args.object that is passed into the Page.loaded event
as it actually points to the built page. The frame.topmost().getViewById method
will return null in the Page.Loaded event.

It is very important to test the functionality on all platforms, as sometimes, it will
work perfectly on your primary development platform but fail spectacularly on the
other platforms.

https://www.npmjs.com/package/nativescript-iqkeyboardmanager
https://www.npmjs.com/package/nativescript-iqkeyboardmanager

Chapter 6

[113]

Code differences
In cases where you are coding an Android- or iOS-specific feature or, perhaps,
working around an issue on a specific platform, there is an easy technique to
determine the platform on every component. Each component that wraps a native
component has either an .ios or an .android property that is used to access the
actual underlying native component. If we wanted to select all the text inside the
myText text box, we can do so as follows:

var myText = frame.topmost().getViewById('myText');
if (myText.android) {
 console.log('We are running on Android');
 myText.android.selectAll();
} else if (myText.ios) {
 console.log("We are running on iOS");
 var range = new NSRange();
 range.location = 0;
 range.length = myText.text.length;
 myText.ios.selectedRange = range;
}

If you want only the code to be executed on iOS, check for the .ios property on the
component and then add whatever the specific code is for iOS. On Android, it is the
.android property. Each platform has its own unique property. This technique is
good for the app.js file. Frequently, you might have to initialize a bit of code only
on iOS or Android. You can use application.ios or application.android in the
app.js file to detect the platform, as we did to initialize the material icons font on
iOS in Chapter 4, Building a Featured Application.

Another use for the .ios and .android properties is when you need to customize a
component for a specific platform. An easy example is early on in NativeScript, the
background color of the iOS application was not working properly. So, to fix this, I
added this code to my main page:

var iosFrame = frame.topmost().ios;
if (iosFrame) {
 iosFrame.controller.view.window.backgroundColor =
 UIColor.blackColor();
}

All it does is get the native iOS Frame element. If this is successful, then we are on a
iOS platform. We will then use the ObjectiveC property to navigate to the window's
background color, and we will set it to black.

Platform Differences

[114]

Platform classes
For much more detailed platform- or device-specific information, a platform class is
provided with NativeScript and is used like this:

var platform = require("platform");
// Device Specifics
console.log("Manufacturer:", platform.device.manufacturer);
console.log("Platform os:", platform.device.os);
console.log("Os version:", platform.device.osVersion);
console.log("Model:", platform.device.model);
console.log("SDK Version:", platform.device.sdkVersion);
console.log("Device Type:", platform.device.deviceType);
console.log("uuid:", platform.device.uuid);
console.log("Language:", platform.device.language);

// Screen Specifics
console.log("Screen width in pixels:",
platform.screen.mainScreen.widthPixels);
console.log("Screen height in pixels:", platform.screen.mainScreen.
heightPixels);
console.log("Screen width in DIPs:",
platform.screen.mainScreen.widthDIPs);
console.log("Screen height in DIPs:",
platform.screen.mainScreen.heightDIPs);
console.log("Screen scale:", platform.screen.mainScreen.scale);

After running the preceding code, you will output what is summarized in the
following table:

Chapter 6

[115]

iPhone Simulator Android Simulator
Manufacturer: Apple
Platform os: iOS
Os version: 8.2
Model: iPhone Simulator
SDK version: 8.2
Device type: Phone
uuid: 40C4A1CE-88E0-4F36-85A4-
9DDA7DF6B436
Language: en
Screen width in pixels: 640
Screen height in pixels: 960
Screen width in DIPs: 320
Screen height in DIPs: 480
Screen scale: 2

Manufacturer: Genymotion
Platform os: Android
Os version: 4.4.4
Model: Samsung Galaxy S5 - 4.4.4 - API 19 -
1080x1920
SDK version: 19
Device type: Phone
uuid: 5634589f2589e5f2
Language: en_US
Screen width in pixels: 1080
Screen height in pixels: 1920
Screen width in DIPs: 360
Screen height in DIPs: 640
Screen scale: 3

As you can see, you can get quite a bit of information from the device you are
running on. If you are checking the languages, notice that iOS returns en whereas
Android returns en_US. Make sure you consider this when comparing and setting
your application language from the platform.device.language value.

Declarative UI
You have several ways to deal with platform specifics in your Declarative UI files.
We will look at each way and examine the pros and cons of each method.

Platform Differences

[116]

Declarative UI properties
The first way is for properties. You can use the following line of code:

<Button ios:text="iOS is Awesome" android:text="Android is
Awesome"/>

As you can see, we prefixed the text property with a ios: or android: prefix, so on
their respective platforms, they will declare that the platform is Awesome. If you only
have a couple of properties to change, this is the easiest method to use and maintain.
It does not allow you to change any platform-specific components though. If you
have a lot of platform-specific properties or you need to use a different component
on the platforms, then you will need to use Declarative UI platform qualifiers.

Declarative UI platform qualifiers
A Declarative UI platform qualifier allows you to qualify a whole group of
components or properties to a specific platform like this:

<Page><StackLayout>
<ios><Label text="I am only on iOS"/></ios>
<android><Label text="I am only on Android"/></android>
</StackLayout></Page>

If you notice, we wrapped our <Label> components in the <ios> and <android>
components. The <ios> and <android> components are not real components.
"What?", you might wonder. Yeah, I know they look like how we add a component,
but they are actually special Declarative UI nodes to allow you to wrap any parts
of the UI that needs to be a distinct per platform. All nodes and properties between
the start <ios> node and end </ios> node will only be processed and used on an
iOS platform. The same applies for the <android> opening and closing tags. Wow!
This can really allow some cool customizations in files. You can easily have different
components make up a screen for each platform. Note that you cannot wrap <ios>
inside <android> or <android> in <ios>. First, it does not make any sense, but
second, they are mutually exclusive. There are no Apple Android or Google iOS
devices. As you can see, using qualifiers is a good way to handle cases where you
have a different component here or there. If you have a lot of changes between the
platforms, using platform-specific files is your best bet.

Chapter 6

[117]

Platform- and device-specific files
The last method to differentiate between platforms is through platform- and device-
specific files. These qualifiers are applicable to JavaScript, CSS, and the Declarative
UI XML files. You can prefix the extension of a file with .android or .ios, so the file
is main-file.ios.js or main-file.android.xml. Then, only this version of the file
will be loaded on that specific platform. Once the version is loaded it allows you to
have a completely custom JavaScript, CSS, or Declarative UI for each platform.

In addition to the platform qualifiers, you can also use device qualifiers such as
.land for landscape or .port for portrait. For screen sizes, the qualifiers minH, min,
and minWH appended with a minimum number of pixels are used as qualifiers. So,
the main-page.minH300.css would require the device to have at least 300 pixels
height for this CSS file to load. The .minHW400 qualifier would require that both the
width and height be greater or equal to 400 pixels for that specific file to load. Be
aware that when you switch orientations, NativeScript does NOT load any other
version of the file. Therefore, when NativeScript loaded the landscape version of the
file and then you rotate your device, the landscape version of that file is still the file
that is running even though you are now in portrait mode. By mixing and using the
different qualifiers, it makes it easy to customize all your screens per platform, screen
size, or orientation with NativeScript.

Screen size differences
Now, in most cases, the completely different screen sizes can be handled using the
platform screen size .minW or minH qualifiers so that you can build a custom layout
when you are dealing with tablets versus a phone-sized device. Unfortunately, this
is not always the case for any image you might want to show. In this case, you have
to do a bit of manual work. Each image has a set resolution. The larger the resolution
of the image, the more memory it takes, but on higher resolution devices, images
obviously look much better. You can deal with images in one of the following three
ways to try and make your application look the best on all devices.

Platform Differences

[118]

Fonts
The first is the way we did in crossCommunicator. We used an icon font that has
all the images we needed as a font character. Fonts are scalable, so irrespective of
the resolution of the screen, the font renders and looks really nice. To make an even
smaller font file, there are several websites, such as http://icomoon.io, where
you can create your own custom font by combining different icons or characters
from multiple fonts into a single font name. By reducing the number of glyphs (or
characters) in a font, the font file size can be reduced drastically. If it is a single color
image that you need, fonts are typically the best way to do it.

Our own custom resource folders
We created our own custom resource folders in our crossCommunicator application.
We used this way for the settings icon on iOS. We created our own folder for all our
icon resources and stored the icons we needed in that folder. You can do this with
any resource you want, but in our case, we needed images.

If you pulled my version of the crossCommunicator application from the GitHub
repo at https://github.com/GettingStartedWithNativeScript, you would see
I have not only an ic_settings.png image file, but a ic_setting@2x.png image
file and a ic_settings@3x.png image file. Apple designed iOS to automatically
pull the best image for the device you are viewing it on. On the current retina (high-
resolution) iOS device, the ic_settings@2x.png file will be automatically loaded
even though we only requested the ic_settings.png file. The @2x prefix stands for
double resolution. So, if your ic_settings file is 48 x 48, then the ic_settings@2x.
png file should be 96 x 96 and @3x would be 144 x 144.

If you look at the following image, you can see what happens if you don't provide
a prescaled image when an image is scaled up. The first or left image is scaled up
from the normal ic_settings.png file size. The second or middle image is scaled
up from the ic_settings@2x.png file. The third or right image is in its own native
resolution. Which icon do you think looks the best? Which icon makes your app look
sharp?

http://icomoon.io
https://github.com/GettingStartedWithNativeScript

Chapter 6

[119]

All you really need is the normal file and the @2x.png file. However, my opinion
is that with the way computers and phones quickly change, it won't be long until
Apple starts using @3x for an even higher resolution display. So, in this case, I am
attempting to future proof this icon on crossCommunicator since the added size for
the additional icon to the app is incredibly minuscule. Now, if you are doing much
larger images, then you probably should skip @3x as it just bloats the app for no
good reason at this point.

I wrote this section of text before Apple released the iPhone 6s. Guess
what Apple did with the 6s? They now use those mystical @3x icons.
I decided to leave this text as is to show you that sometimes, you
want to attempt to future proof your application, as it can sometimes
be a wise decision. The current Apple icon guidelines are at
https://developer.apple.com/library/prerelease/ios/
documentation/UserExperience/Conceptual/MobileHIG/
IconMatrix.html.

Using our own custom resource folder, the files in it are cross platform. I can also
load the same ic_setting.png file on an Android device using the same path.
However, Android doesn't know about @2x, so it would always load the normal
small resolution file, which, like the preceding image, will look bad on a higher
resolution display. This brings us to the third and the best way to acquire image
resources.

Compiled application resources on iOS
Each platform has its own way to embed resources in the application. The way
NativeScript attempts to help you is it has a folder called App_Resources. In the
App_Resources folder is a subfolder for each platform. On iOS, this folder basically
contains the application icons at different resolutions (including the @2x versions)
and the default loading screen (also including the @2x versions). Right now, you
can replace the default loading image and icons to create your own on iOS, just by
replacing those image files in the iOS folder with your own.

https://developer.apple.com/library/prerelease/ios/documentation/UserExperience/Conceptual/MobileHIG/IconMatrix.html
https://developer.apple.com/library/prerelease/ios/documentation/UserExperience/Conceptual/MobileHIG/IconMatrix.html
https://developer.apple.com/library/prerelease/ios/documentation/UserExperience/Conceptual/MobileHIG/IconMatrix.html

Platform Differences

[120]

Now, to add additional resources, you will need to copy your additional resources
into this folder. Then, you need to run the nativescript prepare ios command
in a shell window. This will copy any new resources to the proper build folder in the
platform folder. Each time you compile or prepare your application, these resources
will automatically be updated from this folder to the proper build folders. Next, you
will need to open up the main Xcode project (remember, it is in the /platforms/
ios folder) and then open up the application project on the left pane. Then, open the
resources folder as the following screenshot shows:

Chapter 6

[121]

As you can see, each of the resources in your /App_Resources/ios folder are
listed in this list. Then, you need to Ctrl + right-click the mouse to bring up
the context menu on the resources folder. Then, click on the Add Files to
"crossCommunicator"… menu option. After that, you need to navigate to the
/platforms/ios/crossCommunicator/Resources folder, as this is where
NativeScript puts any of your iOS resources for building. Finally, choose the
resources you want to embed in your application. To show you how this works, add
the ic_settings.png and ic_settings@2x.png files to the compiled resources.
Then, go ahead and quit out of Xcode. After that, open up the main_page.xml file
and let's change the icon to load from a resource. Line 5 should say <ActionItem
ios:icon="~/icons/ ic_settings.png" …>. Change ios:icon to <ActionItem
ios:icon="res:// ic_settings.png" …>. The res:// sufix tells NativeScript to
load this from the compiled resources. That is pretty simple. The main thing you
have to remember is to tell the Xcode project about your new resources. Now, let's
take a look at the Android side of resources.

Compiled application resources on Android
The other folder in the App_Resources folder is android. However, once you
navigate into this folder, you will see multiple drawable-??dpi folders. Each
of these folders is for a different pixel density. Android breaks things down into
multiple resolutions, with each lower resolution working as a fallback to the higher
resolution. For example, the ldpi folder uses a 36 x 36 image for its application icon,
where hdpi uses a 72 x 72 image for its application icon. Android OS automatically
uses the closest folder to its resolution and then proceeds to use the next resolution
until it finds the highest resolution file of the name you wanted to load.

So, if I was going to use the same ic_settings.png file on Android, I would have a
24 x 24 image (same as the normal ic_settings.png file on iOS) in the mdpi folder.
Then, in the hdpi folder, it would be 36 x 36, and xhdpi would be 48 x 48 (the same
as the @2x file). In xxhdpi, it would be 72 x 72, and finally, in xxxhdpi, it would
be 96 x 96. So the resolutions in order are ldpi, mdpi, tvdpi, hdpi, xhdpi, xxhdpi,
xxxhdpi. Any image you use, you typically want to have multiple sizes for the
different Android screen resolutions. Now, you can get away with not having each
of those sizes, as the Android OS will automatically scale down and scale up images
from the next closest sizes. However, with icons, it might be worth having a specific
icon for each size if the file size is tiny just to make your interface as sharp as possible
on all devices.

Platform Differences

[122]

On Android, those folders are as shown in this table:

ldpi mdpi tvdpi hdpi xhdpi xxhdpi xxxhdpi
Scaling 0.75 1 1.33 1.5 2 3 4
Pixel Density 120 160 213 240 320 480 640
Launcher Icon
Size

36 x
36

48 x
48

64 x 64 72 x 72 96 x 96 144 x 144 192 x 192

By default, mdpi is the default 1 pixel = 1 device independent pixel. So, when you
are creating an image that you want to have in a higher resolution, multiply your
dimensions by the scaling factor, and you will see what resolution you need for the
other DPI sizes. For example, if we take an mdpi launcher icon, which is 48 x 48 and
multiply 48 by the xhdpi scaling factor of 2, you get 96 x 96. Another example would
be if you had a 100 x 120 image you were showing on mdpi and you wanted to be
able to support xxhdpi, then you would take 100 * 3 = 300 and 120 * 3 = 360. This
means you want an image of 300 x 360 for xxhdpi.

The mdpi image is also equivalent to your default image size on iOS. The xhdpi is
equivalent to the @2x on iOS. To my knowledge at the time of the writing this book,
there is no device that takes advantage of xxxhdpi, just like no iOS device takes
advantage of @3x. In addition, unless you are specifically targeting a TV device, you
can ignore tvdpi and just use hdpi. The images from hdpi will automatically be
scaled down on devices that need tvdpi, and the scaling down should not produce
any noticeable artifacts like scaling up does.

The other nice thing you can do in the App_Resources folder for Android is use
any of the other standard resource files and folders, such as anim, color, layout,
raw, values, and xml. Each of these resource folders is treated the same way as in a
traditional Java-based Android application.

On the Android platform, you do not have to do anything besides putting
the resources into the folders, and you are good to go. All the resources will
automatically be built into the application for you. You access the resources the
same way on Android as on iOS using the res:// prefix and then your filename.
This allows you to put the same resources into both platforms and then access them
exactly the same way.

In a nutshell, on iOS, make sure you have the normal and @2x versions of all images.
On Android, you can use the normal version in the mdpi folder and the @2x version
in the xhdpi folder (just make sure to remove @2x from the filename on Android).
Then, your images should look fairly clean on almost all devices.

Chapter 6

[123]

Device differences
Now that you have got a handle on how to build the resources into your application,
the final item is dealing with physical differences in devices. You never know what
type of device your application will be running on. The only thing you can really
count on in a device is that the device will have a screen. The best impression you
can give your customers is an app that doesn't crash, even if it doesn't support the
device they are trying to run it on.

Each device will have different sensors and different accessories, and some might
even have a physical keyboard. Take the Samsung Galaxy S4 phone. It came with
sensors to detect altitude, humidity, and temperature. You might guess that the
Samsung Galaxy S5 would also have the same sensors. When Samsung released
their new flagship phone, they actually removed or disabled the Humidity and
Temperature sensors. Fast forward to the new Samsung Galaxy S6, they now
removed SD card support. Despite being flagship devices, Samsung has added and
removed things through the iterations of each phone. So, before you call your code to
open a connection to the GPS system, check to see whether the device actually has a
GPS. On Android, the method is simple, as shown here:

var application = require('application');
var packageManager =
application.android.context.getPackageManager();
var hasGPS =
packageManager.hasSystemFeature(android.content.pm.PackageManager.
FEATURE_LOCATION_GPS);

FEATURE_LOCATION_GPS is one of many strings you can pass in to find out whether
a specific sensor exists. If you look in the PackageManager documentation (http://
developer.android.com/reference/android/content/pm/PackageManager.
html), it lists all the different sensors and features you can detect on Android. On
iOS, you have a much smaller number of devices. You can actually easily use the
device ID from the platform module to determine whether the device supports a
feature. Alternatively, when you attempt to initialize the device, make sure you have
it in try and catch statements and evaluate the failures, as iOS typically throws an
error stating that device ability doesn't exist.

The more often you make these verification checks and wrap the initialization in try
and catch statements, the more likely your app will not crash when that support is
missing. So, verify that the support exists. Then, use it or let the customer know why
your app can't run on their device.

http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/reference/android/content/pm/PackageManager.html

Platform Differences

[124]

The good news is most of the time, the built-in NativeScript library and several
of the plugins will wrap this abstraction for you. So, you do not have to deal with
it. However, it is something you would want to keep in mind while writing your
application.

Summary
We went through a lot of material here. You learned how to customize your code
and screens for any devices using several different types of platform qualifiers. Then,
you learned the basics about both the iOS and Android resource systems. You also
learned how to add new resources to both platforms. Finally, you got some simple
advice to always check for support for anything you need before trying to use it.

In the final chapter, we will see how easy it is to test, debug, and deploy our
application.

[125]

Testing and Deploying
Your App

Wow, we are almost done with learning NativeScript. The hard part is behind us.
The fun part is about to begin. Testing and debugging! Just so I don't totally ruin
your parade, we will discuss a couple of different ways to do testing outside of
NativeScript. Then, we will explore how to read the call stack and how to debug
your application. Finally, when your application is 100 percent bug free, we will see
how to publish it.

In this chapter, we will cover the following topics:

• Testing your application
• Test frameworks
• Local testing of your code
• Unit testing on a device
• Testing on a device
• Understanding the call stack
• Debugging your application
• Publishing your application

Testing and Deploying Your App

[126]

Testing your application
Multiple books have been written on testing. There are a dozen ways to build apps
using tests and/or test-driven development, and these books cover them well. So, we
aren't going to dive into testing as deep as these books do. I personally lean toward
doing functional tests and continuous integration testing. However, this subject also
requires one complete book.

All we are going to do is cover the basics of how to do tests for your application and
the particularities of doing tests with NativeScript. So, without further ado, let's get
to it.

Test frameworks
There are several different testing frameworks for JavaScript. So, if you have your
own favorite testing framework, most of this advice would also apply to it. In this
case, we will use Mocha. It is a fairly popular testing framework, so you can easily
find many samples and examples on how to use it on the mochajs.org website.
However, we will get you up and running with NativeScript. The first thing you
need to do is open a terminal shell and install mocha with the npm install –g
mocha command. The -g option will tell npm to install mocha globally, just like we did
when we installed the nativescript command. By making it globally available, you
can run it just by typing mocha anywhere.

Mocha is a JavaScript testing framework. This framework runs under
node, so everything we are doing with the testing is all using node-
based code. This might be confusing sometimes as JavaScript is simpler
compared to NativeScript. So, even though we are loading and testing
our code that we wrote for NativeScript, it is actually running under
node and not NativeScript. This means we have no access to any
NativeScript libraries.

Next, you need to navigate to your main project folder and create a new test folder.
The test folder is where you will put all your tests. If you type mocha now, it will
print 0 passing, since you have 0 tests. The first example test we will create is a
TestAjaxSocket.js file inside the test folder. It will contain the following lines of
code:

// Require our AjaxSocket class
var AjaxSocket = require ('../app/AjaxSocket');

mochajs.org

Chapter 7

[127]

// Require the built in Node assert class
var assert = require('assert');

// Overwrite these functions, as this test unit does not test actual
sending or actual receiving
AjaxSocket.prototype.send = function(s) {
 this._handler("send",
 '{"clientId":1,"messages":[{"from":"me"}]}');
};
AjaxSocket.prototype._handleListener = function() { };

// Create a new AjaxSocket class
var socket = new AjaxSocket();

// Describe and implement the tests
describe('Ajax Properties', function() {
 describe('#setName', function () {
 it('should = the name we set', function () {
 socket.setName("Awesome");
 assert.equal(socket.getName(), "Awesome");
 });
 });
 describe('#setHost', function () {
 it('should not be null', function () {
 socket.setHost("Book");
 assert.notEqual(socket.getHost(), null);
 });
 });
});

describe('Ajax Send/Receive', function() {
 describe('#Send', function () {
 it('done should be called with a fake packet', function (done)
 {
 socket.on("message", function(d) {
 assert.equal(d.from, 3);
 done();
 });
 socket.send("This is an Awesome Book!");
 });
 });
});

Testing and Deploying Your App

[128]

In the preceding test, we require our AjaxSocket class, which is what we will test,
and the built-in node assert library. Next, we will describe two separate tests. One set
of tests is to test our two setters. The other test actually will test the receiving code
and message handling. You can describe as many tests as you want and group them
easily using the describe command.

Mocha alone is good to create unit tests of any of our standalone components that
don't touch any NativeScript code. So, in this case, to even make it simpler, we
created a function that eliminated the need for the Ajax component to actually talk
to a server. If you download the source code from the repo, you will see another test
file that will actually test communicating with the server. The idea is that this file
tests some of the functionality without requiring a server running. We then extend it
to test the parts that haven't been tested, including tests for actual server responses. I
typically have both offline and online tests so that I can run a group of tests without
the server running to verify that, at least, the basics haven't broken while I make any
changes. Then, I'll activate a server and run the tests that require a server. This is
why this test is designed to test everything without a server.

Now, you might be thinking, "Wait a second! You just wrote that Mocha is good for
standalone components that don't touch actual NativeScript code. Isn't this book
on NativeScript?" Good catch! Let me explain. When you separate your logic from
the NativeScript code, you can easily create unit tests to test using any one of the
standard frameworks such as Mocha. However, since the NativeScript code itself
currently only runs on the actual devices or device emulators to run any tests that
actually use NativeScript code, you need to run the process on a device that supports
NativeScript. Your development machine doesn't actually support running pretty
much any of the NativeScript common core code. Fortunately, there are ways around
this that we will look at before we look at how to test your final application on a
device.

Local testing of your code
Let's look at testing the WebSocketWrapper.js file. At the top of it, it requires
nativescript-websockets code. Well, the nativescript-websockets code only
runs on Android or iOS. It doesn't run on your development machine. So, how are
you going to test it?

Chapter 7

[129]

You will use Proxyquire. Proxyquire is a Nifty library that allows you to replace any
require statements during tests without modifying the code that you are testing.
Using it allows you to dynamically replace the functions and classes exported from
a module with mock or dummy replacements. A require statement would load
the exported functions and classes into your code. So, let's look at the top part of the
testWebSockets.js file:

var proxyquire = require('proxyquire');
var assert = require('assert');

var DummyWS = function() {
 this._isOpen = false;
 this._events = {};
};
DummyWS.prototype.on = function(event, callback) {
 if (!this._events[event]) { this._events[event] = [];}
 this._events[event].push(callback);
};
DummyWS.prototype.send = function(m) {
 for (var i=0;i<this._events.message.length;i++) {
 this._events.message[i](this, '{"clientId":1, "from":"SERVER",
 "message":"'+m+'"');
 }
};
DummyWS.prototype.isOpen = function() { return this._isOpen; };
DummyWS.prototype.close = function() { this._isOpen = false; };
DummyWS.prototype.open = function() { this._isOpen = true; };
DummyWS['@noCallThru'] = true;

var WebSocket = proxyquire('../app/WebSocketWrapper',
{"nativescript-websockets": DummyWS});

var socket = new WebSocket();

So, what do we have here? First, we require proxyquire and assert. Proxyquire
is going to do our magic for us. We need something to replace nativescript-
websockets code since that code is incompatible with our developer machine. So,
we will create a dummy WebSocket class, which will emulate the nativescript-
websocket class. We have to stub the constructor, on, send, isOpen, close, and
finally, the open functions. These are the only nativescript-websockets functions
we will call from our WebSocketWrapper class. We also added @noCallThru =
true to our class, which is actually a parameter for Proxyquire. This parameter tells
Proxyquire to skip attempting to load the real nativescript-websockets class.

Testing and Deploying Your App

[130]

Normally, Proxyquire will still load the underlying library that was in the require
statement. Then, you will use Proxyquire to replace a couple of functions. In
NativeScript, since the plugins and common code are all Android or ObjectiveC
code, they will totally fail to run. That is why we have to configure Proxyquire to
skip loading the original library. The next line is where we will use Proxyquire
instead of the require statement.

To install Proxyquire, you just need to use npm install --save-dev
proxyquire in your application directory. The --save-dev option
tells npm to install it only as a developer requirement. This will make sure
Proxyquire does not get deployed to the app when the nativescript
command builds your application, as only actual app requirements get
built into the application.

Proxyquire takes two parameters. The first parameter is which file to load. The
second parameter is an object with the all the stubs. So, now, anytime it sees
require('nativescript-websocket') inside WebSocketWrapper, it will instead
use our DummyWS class. Pretty sweet, huh? Using Proxyquire, you can stub out any
NativeScript code you want. This allows you to test your code as if it were using
the real NativeScript library on your local machine. The rest of the code in this file is
exactly the same as the TestAjaxSocket.js file:

describe('WebSockets Properties', function() {
 describe('#setName', function () {
 it('should = the name we set', function () {
 socket.setName("Awesome");
 assert.equal(socket.getName(), "Awesome");
 });
 });
 describe('#setHost', function () {
 it('should not be null', function () {
 socket.setHost("Book");
 assert.notEqual(socket.getHost(), null);
 });
 });
});

describe('WebSocket Send/Receive', function() {
 describe('#Send', function () {
 it('done should be called with a fake packet', function (done)
 {

Chapter 7

[131]

 socket.on("message", function(d) {
 assert.equal(d.from, 3);
 done();
 });
 socket.send("This is an Awesome Book!");
 });
 });
});

So now, we have two of the modules from our application tested anytime we run
Mocha in the main application folder.

Using Proxyquire, we can even add tests of the main-page.js and settings.js
pages. It would require you to create several dummy wrappers for the NativeScript
libraries that are currently being used. You would do it just like we created for the
nativescript-websockets library. By doing so, it would allow you to actually test
your screen's code for any logic issue on your development system.

Unit testing on the device
During the final review of the book, the master branch (the totally unreleased
versions) of the nativescript command introduced the brand new nativescript
test command. Fortunately, I saw something appear in the repos and asked about it.
Yours truly, living totally dangerously, pulled the absolute latest and greatest master
versions of everything so that I can document the all new bleeding-edge way to do
unit testing on devices and emulators.

The latest and greatest daily master runtimes are automatically built for all platforms
on http://nativescript.rocks as a community service. So, in all reality, it was
a simple download and install, and then I was running the latest and greatest
bleeding-edge NativeScript code. Typically, the only reason you run from master
is if you need a fix or some feature that isn't going to show up until the next major
release, which might be a while from now.

Until now, we were trying to test our code outside of NativeScript. This is an
awesome way to create unit tests that have full access to NativeScript and the device.
Your unit tests will actually be running on an emulator or a real device under
NativeScript runtimes. This does not discount the ways explained earlier to do unit
testing, as these ways run much faster and can be easily off-loaded to an integration
server. However, this way can give you a much better picture of the entire project, as
it is obviously running your code on the NativeScript platform.

http://nativescript.rocks

Testing and Deploying Your App

[132]

Installing the test framework
You can install the test framework using a simple nativescript test init
command. It will then ask you which test framework you want to use. At the time
of writing this book, it currently has support for Jasmine, Mocha, and QUnit. For the
sake of simplicity, I would recommend that you standardize on one framework so
that all your tests are written the same way if you choose to do any of the other off-
device testing in addition to on-device testing. All three are great test frameworks. To
help you understand this chapter, I would recommend that you choose Mocha as we
have already used it for the preceding tests, and I will use it for the next test.

It will automatically create a folder called tests in the app folder. This is where you
want to put any tests that you want to run on a device.

Writing tests
If you choose Mocha, the tests are exactly the same as we explored earlier in this
chapter. So, let's create a test based on the other tests we have done. Let's take the
websocket test and actually make it run against our server. The following code will
actually test the websocket library:

var WebSocket = require ("nativescript-websockets");

// We have to open the websocket to our server;
// use the same ip address that we used in crossCommunicator.
// Again on my box it is 192.168.56.1
// Don't forget the server outputs its ip's
var socket = new WebSocket("ws://192.168.56.1:3000");
socket.open();

describe('WebSocket Send/Receive', function() {
 // We generate a random message; to verify we get it back
 var rnd = parseInt(Math.random()*100000,10).toString();

 describe('#Send', function () {
 it('WS message handler should be called with packets',
 function (done) {
 var hasCalledDone = false;
 var counter = 0;
 socket.on("message", function(ws, d) {
 counter++;
 // The first message from the server should be
 // the setClient command

Chapter 7

[133]

 if (counter === 1) {
 var hasCommand = d.indexOf
 ("{\"command\":\"setClient\",\"clientId\":");
 assert.equal(hasCommand, 0);
 } else {
 // Wait for our message back
 if (d === '{"from":"ME","message":"'+rnd+'"}') {
 if (!hasCalledDone) {
 hasCalledDone = true;
 done();
 }
 }
 }
 });
 socket.send(JSON.stringify({from: "TEST", message: rnd}));
 });
 });
});

The preceding test basically opens websocket, creates a random message, and sends
it. The message listener then listens for messages. The first message should always
be the setClient message from the server. The following messages are all messages
that the server has queued up to send to new users. Finally, it will send back the
message you sent with your random message. We will compare this, and if we
find it, then we will run the done() command, which tells Mocha that this test was
successful. Otherwise, the test will timeout and show up as a failure. Remember that
before you run the test, you must start the crossCommunicator server. Otherwise,
this test won't be able to connect and will fail.

Running tests
Running tests is equally easy. All you have to do is type tns test android or
tns test ios to start the test process. This launches the process on your local
machine and then copies the test and all the NativeScript code to your device. With
the current beta version of the command, I ran into an issue where it wouldn't
automatically launch the test application. Once it finally stated it had successfully
deployed the application, I just had to manually launch the app on the device.
Otherwise, it actually ran and performed all the tests and then automatically quit
out of everything. Your terminal windows where you ran tns test will show
you the status of all the tests. The Telerik team should be proud. They did a great
job of integrating multiple pieces and making a nice working unit test system for
NativeScript.

Testing and Deploying Your App

[134]

Testing your app on a device or emulator
Now that we looked at how to do different types of unit testing on your local
machine and on the device, the next step is to actually have tests that run your actual
app on an emulator or device. Nothing can beat an actual test of your full application
on the device that you are using and targeting. The more automated the testing is,
the easier it is for you to detect issues in your code while you are developing and
enhancing your application.

There is an open source project called Appium that we will use. It is located at
http://appium.io. This project supports iOS and Android, which makes it a
perfect fit to do all of our on-device testing. To install it globally, you need to use npm
install -g appium command. Then, in your main project folder, you need to also
use npm install --save-dev wd, which will install the JavaScript driver that you
can use to drive your application from your developer machine in JavaScript. We
will continue to use Mocha to run our tests and report any issues.

Appium has many demos available to help you build complete
application test coverage. Some fairly good documentation to walk you
through things is at http://appium.io/slate/en/v1.1.0, and
a large number of examples are at https://github.com/appium/
sample-code.

The example we will write is going to be for the Android platform. However, in
the comments, I will list some slight changes to make it run for iOS. Appium is
totally cross platform. However, the underlying native platform UI controls that
NativeScript abstracts are not named the same way since they actually call the native
iOS and Android controls. Currently, you have to write slightly different tests for
each platform.

Before you actually run Mocha on this test, you need to make sure you start the
Appium server, open up a new terminal shell, and start Appium by typing appium in
the terminal shell. So, let's start our journey and create a new testAppium.js file:

var wd = require('wd');

describe("Appium", function () {
 this.timeout(100000);
 var driver;

 before("Appium Setup", function () {
 driver = wd.promiseChainRemote('localhost', 4723);

 var testFramework = {
 browserName: '',
 'appium-version': '1.3',
 platformName: 'Android', // 'iOS'

http://appium.io
http://appium.io/slate/en/v1.1.0
https://github.com/appium/sample-code
https://github.com/appium/sample-code

Chapter 7

[135]

 platformVersion: '4.4', // '8.1'
 deviceName: '', // 'iPhone Simulator'
 app: __dirname +
 '/../platforms/android/build/outputs/apk/crossCommunicator-
 debug.apk'
 // __dirname +
 '/../platforms/ios/build/emulator/crossCommunicator.app'
 };

 return driver.init(testFramework).
 setImplicitWaitTimeout(3000);
 });

 after("Appium Setup", function () { return driver.quit(); });

 it("should type in an element", function (done) {
 driver
 .elementByXPath
 ('//android.widget.EditText[@text=\'Enter your name\']') //
 '//UITextField[@id=\'name\']'
 .sendKeys('Testing')
 .text()
 .then(function (v) {
 if ('Testing' !== v) {
 done(new Error("Value in name field does not match"));
 } else {
 done();
 }
 }, done);
 });
});

We start the test by requiring the wd driver. This is the driver that allows us to talk
to Appium from your test in JavaScript. The describe and it functions are just like
before, as they are part of Mocha. We now added a couple of new Mocha functions,
before and after. The before function is run before any tests; likewise, after is
run after all the tests. In our before function code, we connect to our Appium server.
In the after function, we disconnect properly from the Appium server to make sure
everything is cleaned up. The actual test looks for an element on the screen via the
Appium XPath system to see whether they can exist. In our case, the element exists.
So, we will send text to the control, followed by checking the controls to verify that
it has our new text. It is a rather simple test, but as you can see, we can check in
chain with the find, set, and get functions. You can easily set, get, click and check
multiple fields per test.

So now, the next time you run mocha, it will actually test that the settings screen
name field works on the emulator along with the WebSocket and AjaxSocket tests.

Testing and Deploying Your App

[136]

Understanding the call stack
We will switch tracks. The other side of the equation is debugging your application
when it breaks. Nobody is perfect at coding, so understanding the call stack is an
important factor in figuring out why your application has just crashed. Both Android
and iOS report the call stack slightly differently. So, we shall examine Android first
and then finish up with iOS call stack. So, open up your main-page.js file, and on
line three, add the bogus code: Stock.blah();.

Android call stack
On Android, you get the call stack in two different places. When the application
crashes, it normally creates a log in the actual application that you can view and it
looks like this:

As you can see, about half way down on the screen, in the error report, there is the
actual error. The error is TypeError: cannot read property 'blah' of undefined. In
this case, I put it on line 3, column 6. In this case, the error actually points to the issue
directly. Sometimes, you get lucky, and the error actually is straightforward. So, you
look at line 3, around character 6 of the main-page.js file, and you would see that
we put Stock.blah(); as the code. This, of course, is totally broken since Stock
hasn't been defined, and so blah is not even a function of Stock. If you look at the
screen closely, you would see StackTrace: and then the file, line, and column of
each function that was called to get to this point of where it failed. Most of the time,
you can use the StackTrace as shown in your app when it crashes. However, there
are a couple of cases where you won't get an in-app stack trace.

Chapter 7

[137]

The second place you can see the stack trace is in the terminal where you started the
app from the application logging. So, you would see something like this:

As you can see, about half way down the screen is the same TypeError: Cannot read
property 'blah' of undefined error. It also lists the same StackTrace code. Now, one
word of caution: I have seen where the in-app error StackTrace code was wrong,
and the StackTrace code at the terminal was correct. So, if the StackTrace you are
looking at in the application doesn't make any sense, double-check the terminal and
see whether it has a better StackTrace. For the majority of the time, the stack traces
will match, so just look at the application stack track as it is easier to read without all
the additional logging.

Testing and Deploying Your App

[138]

iOS call stack
On the iOS platform, the call stack is on the terminal as well. However, the majority
of the stack trace is the actual native runtime and utterly useless. Above the first
compiled stack trace line, 1 0xb74c0 NativeScript::FFICallback<NativeScript::Obj
CMethodCallback> ::ffiClosureCallback(ffi_cif*, void*, void**, void*), you should
see something like this line: file:///app/main-page.js:3:6: JS ERROR ReferenceError:
Can't find variable: Stock. This tells you that the error was in the main-page.js file,
on line 3, character 6. It looks like this:

Since the JavaScript engine that runs on iOS is different from Android, the error is a
bit more precise than Android. On Android, you get property 'blah' of undefined,
whereas on iOS, you actually get the variable name that is undefined. So sometimes,
if the error is confusing on one platform, you can run it on the other platform, and
you might be able to get a better picture of the problem.

Chapter 7

[139]

Debugging your application
NativeScript uses the built-in Chrome debugging tools to allow you to debug your
application on Android and a similar set of tools in Safari for iOS. You can start the
debugging in one of two ways. You can start the debugging when you launch your
application using nativescript debug android --debug-brk [--device /
--emulator / --geny] to launch your application with the debugger active. The
second way is if your application is currently running, you can use nativescript
debug ios --start [--device / --emulator / --geny] to connect to an
already running application.

NativeScript currently requires a working Internet connection for
debugging. It also requires Chrome to be installed to debug Android
applications.

Once you have launched the debug tools, you should see something like this on
Android:

Testing and Deploying Your App

[140]

This is the Node inspector that you can use in Chrome to debug your web pages
and even node apps. NativeScript is leveraging the same code that Google wrote for
Chrome to work in NativeScript. The Developer tools are very powerful and allow
you a lot of flexibility. You can easily step through each line of your code or run to
the next break point. You can easily add break points in either the code manually
using the debugger; (see line 45) command or by clicking on the line number (see
line 59).

The debugger; command is pretty global through JavaScript. Browsers,
node, and even NativeScript can all use it. It causes a debugger to break
and stop at that instruction if a debugger is attached. Otherwise, it is
ignored.

The iOS interface is similar and also allows you the same abilities to debug your
running code. The main thing you need to know is how to start the debugger. Then,
it is fairly simple to step through all your code and figure out what is broke.

Publishing your application
On Android, you need to build the application using nativescript build
android --release --key-store-path=<yourfile> --key-store-
password=<your password> --key-store-alias=<alias> --key-store-alias-
password=<password>. This will build you a release version of your APK. The
APK's location is going to be in your applications/platforms/Android/build/
outputs/APKs. Make sure you do not take your debug package, as it will be rejected
by all the app stores. You need a key to sign your application so that Google (and
others) knows that this application is from you and only from you.

To create a keystore, you can use the keytool program that comes with
the Android SDK. The keytool program allows you to create, edit, and
delete keys inside the store file. However, there is a cross-platform open
source project at http://keystore-explorer.sourceforge.net/,
which is a graphic user interface to edit and create your keystore.

Once you have built your application to publish your Android application on Google
Play Store, you need to have a Google Play account. The main URL to deal with
Google Play Store is https://play.google.com/apps/publish. Once you have
an account, you can easily upload your APK file to it. Another popular location to
publish Android apps is the Amazon store at https://developer.amazon.com/
welcome.html.

http://keystore-explorer.sourceforge.net/
https://play.google.com/apps/publish
https://developer.amazon.com/welcome.html
https://developer.amazon.com/welcome.html

Chapter 7

[141]

Publishing to iOS
On iOS, it is a slightly different process. The first step is to run tns build ios
--release from the terminal. This will make sure your application is totally
up to date. Then, you can follow the instructions that Apple detail at https://
developer.apple.com/library/ios/documentation/IDEs/Conceptual/
AppDistributionGuide/SubmittingYourApp/SubmittingYourApp.html. The
main XCode project, as we discussed earlier, is located in the /platforms/ios/
folder that you will need to open via XCode to submit to the Apple iOS Store.

If you are using any plugins that use cocoapods, then the main project
file is actually named with projectname.xcworkspace rather than
with projectname.xcodeproj. So, when you open this up in Xcode
to submit the application, make sure you open the projectname.
xcworkspace project.

Summary
We covered a lot on debugging and testing in this chapter. You learned several
techniques on how to test your application. You learned how to build and run
tests on your development box and on emulators or real devices. Appium is really
awesome if you spend time to build coverage of all your code. For the most part, the
tests are fairly cross platform with minor changes to the field types.

In addition, we covered how to actually debug your application, which can be very
important when attempting to figure out why something isn't working as expected.

If you are looking for a specific file or what it does, remember to check out all the
locations listed in Chapter 2, The Project Structure. This chapter can help greatly when
you are trying to figure out where to stick something in a new project.

When you are in need of a cool feature, don't forget to check out all the cool plugins
and the sites where you can find them. It is normally better to reuse other tested code
than to build your own. Third-party components are real life savers for being able to
quickly develop a new application.

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/SubmittingYourApp/SubmittingYourApp.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/SubmittingYourApp/SubmittingYourApp.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/SubmittingYourApp/SubmittingYourApp.html

Testing and Deploying Your App

[142]

As a last bit of advice, we covered a lot of information in Chapter 6, Platform
Differences, including platform differences and different screen resolutions. This is
critical information to build a good looking cross-platform application. You have
to worry about devices in multiple eco systems, so try and take into account all
the similarities you can between your targets. Then, you need to use the platform
specifics to build out your customizations for each platform.

Now, you have the tools you need installed and, most importantly, you now know
how to build a cross-platform application and test and debug it. Finally, you now
know how to become a billionaire by submitting your awesome application to all the
major stores.

[143]

Index
Symbols
.gradle folder 24

A
AbsoluteLayout 65
Android and iOS differences

about 111
Page.loaded event 112
soft keyboard 112

app.css
about 27
exploring 58, 59

app folder
.gradle folder 24
about 18, 24
application page 27
App_Resources folder 24
fonts folder 25

app folder files
about 25
app.css 27
app.js 26
license 25
package.json file 25

app icons
URL 24

Appium
URL 134

Apple
developer guide, URL 23
icon guidelines, URL 119

application
Android apps publishing, URL 140
application-settings component 69

building 68, 69
creating 10
creating, steps for 11, 12
crossCommunicator out, trying 97
debugging 139, 140
dialogs 72
GridLayouts 76-78
nonvisual components 69-71
promises 75
publishing 140
publishing, to iOS 141
publishing to iOS, URL 141
running 12
server 95
server, setting up 96, 97
settings 69
settings screen Declarative UI 76
testing 126
testing, on device 134, 135
testing, on emulator 134, 135
trying out 95

application component 31
application CSS 89, 90
application page

about 27
main-page.css file 28
main-page.js file 27, 28
main-page.xml file 28
main-view-model.js file 29

App_Resources folder 24

B
binding

about 51
and event system 49

[144]

C
call stack

about 136
on Android 136, 137
on iOS 138

Cascading Style Sheets (CSS)
about 52
need for 53
properties, existing 56-58
rules, configuring 54, 55
trying out 60, 61
using, ways 53, 54

CocoaPods 23, 141
code

differences 113
local testing 128-131

complex property 44, 45

D
Declarative UI

<Button ...> node 45
<Label ...> node 42, 43
<Label ...> node, FormattedString

component 43
<Page ...> node 41
<StackLayout ...> node 42
about 39, 82, 115
and components 46
bindings 84
complex property 44, 45
label 41
main page 83
main page, body 83
main page, footer 85, 86
Page 41
platform qualifiers 116
properties 116
repeaters 84, 85
ScrollViews 84
second <Label...> node 46
settings.xml file 47-49
StackLayout 41
using, for settings page 47
visual components 47
XML parser 40

device differences 123
dialogs

about 72
action dialog 75
alert dialog 73
confirm dialog 73
login dialog 74
prompt dialog 74

DockLayout 66

E
ES6 72
ES6 promises

URL 76
event system 50, 51
expressions

URL 51

F
fonts

about 90
folder 25
URL 90

foundational components
about 31
application component 31
frame component 32
page component 32, 33

G
GitHub repo

URL 90, 118
GridLayouts 66, 67, 76-78

H
hooks folder 18

I
icons

about 91
URL 91

Intel HAXM emulator 7

[145]

K
keytool program

URL 140

L
layouter program

URL 75
layouts

about 63
AbsoluteLayout 65
DockLayout 66
GridLayout 66, 67
StackLayout 64
URL 63
WrapLayout 64

lib folder 18

M
main-page.css file 87, 89
main-view-model.js file

about 29
rewrite 30, 31

mocha 126
MVVM

URL 28

N
NativeScript

about 1
and TypeScript 4
benefits 3
command line 8
commands 8-0
common modules 5
competitors 2
development language, selecting 5
installation, help 8
installing 6, 7
prerequisites 6
Telerik's NativeScript 2
TypeScript, uses 4
unofficial plugin list, URL 100

uniqueness 2, 3
URL 2, 95

NativeScript-IQKeyboardManager
URL 112

NativeScript, prerequisites
Android 7
Android, URL 7
iOS 6
iOS, URL 6
node.js 6
node.js, URL 6

node_modules folder 19
npmjs.com 100

P
PackageManager documentation

URL 123
page component 32, 33
Page.loaded event 112
PHPStorm development environment 12
Platform

and device-specific files 117
platform class 114, 115
platforms/android folder

Android application location, compiled 22
bad resource files, on Android 22

platforms folder
about 20
platforms/android folder 20, 21
platforms/iOS folder 22

project directory
about 15, 16
app folder 18
hooks folder 18
lib folder 18
node_modules folder 19
root directory 17

promises 75
Proxyquire 129-131

R
root directory 17

[146]

S
screen

building 79
Declarative UI 82
JavaScript code 79-82

screen size, differences
about 117
Compiled application resources,

on Android 121, 122
compiled application resources,

on iOS 119-121
custom resource folders 118, 119
fonts 118

second page
about 33
additional files and pages, creating 34
another page, navigating to 35
application, running 36
screen, viewing 36
settings.js, creating 34, 35

server
communication with 91-95
setting up 96, 97

StackLayout 64

T
Telerik plugin site 100
Telerik SideDrawer plugin

installing 101
using 108, 109

test frameworks 126-128
third-party components, finding

about 99
on NativeScript unofficial plugin list 100
on npmjs.com 100
on Telerik plugin site 100

third-party components, installation
about 100
Telerik SideDrawer plugin, installing 101
vibration plugin, installing 101
Websockets plugin, installing 101

third-party components, usage
about 102, 110
Telerik's side drawer, using 108, 109
usefulness 110
vibration plugin, using 102
Websockets, using 102-108

tns-core-modules folder 19
TypeScript

about 4
uses, in NativeScript 4

U
UI

styling 52
unit testing

on device 131
test framework, installing 132
tests, running 133
tests, writing 132, 133

V
vibration plugin

installing 101
using 102

view component
URL 47

visual components 47

W
Websockets

plugin, installing 101
using 102-107

WrapLayout 64

X
XML parser 40

Thank you for buying
Getting Started with NativeScript

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning TypeScript
ISBN: 978-1-78398-554-8 Paperback: 368 pages

Exploit the features of TypeScript to develop and
maintain captivating web applications with ease

1. Learn how to develop modular, scalable,
maintainable, and adaptable web applications
by taking advantage of TypeScript.

2. Create object-oriented JavaScript that adheres
to the solid principles efficiently.

3. A comprehensive guide that explains the
fundamentals of TypeScript with the help of
practical examples.

Mastering TypeScript
ISBN: 978-1-78439-966-5 Paperback: 364 pages

Build enterprise-ready, industrial strength web
applications using TypeScript and leading JavaScript
frameworks

1. Focus on test-driven development to help build
quality applications that are modular, scalable,
maintainable, and adaptable.

2. Practical examples that show you how to use
TypeScript with popular JavaScript frameworks
including Backbone, Angular, Node.js, require.
js, and Marionette.

3. Enhance your TypeScript knowledge with
in-depth discussions on language features,
third-party libraries, declaration files, and
so on using practical scenarios.

Please check www.PacktPub.com for information on our titles

Mastering JavaScript High
Performance
ISBN: 978-1-78439-729-6 Paperback: 208 pages

Master the art of building, deploying, and optimizing
faster web applications with JavaScript

1. Test and optimize JavaScript code efficiently.

2. Build faster and more proficient JavaScript
programs for web browsers and hybrid
mobile apps.

3. Step-by-step tutorial stuffed with real-world
examples.

Mastering JavaScript [Video]
ISBN: 978-1-78439-134-8 Duration: 04:10 hours

Elevate your web development skills by deep diving
into the power of clean, concise object oriented
JavaScript, patterns, and more

1. Master JavaScript best practices for designing
and developing fully functional, cross-platform
libraries.

2. Use powerful design patterns for an
innovative and cutting-edge approach
to web development.

3. Enhance the performance of your libraries
by focusing on a new aspect in every video.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to NativeScript
	NativeScript
	Telerik's NativeScript
	Other competitors
	NativeScript uniqueness
	NativeScript is easy

	NativeScript and TypeScript
	What is TypeScript?
	TypeScript's use in NativeScript
	Choosing a development language
	Common modules

	Installing NativeScript
	Prerequisites
	node.js
	iOS
	Android

	Installation
	Installation help

	The NativeScript command line
	NativeScript commands

	Creating your first application
	Creating the application in easy steps
	Running the app

	Summary

	Chapter 2: The Project Structure
	Project directory overview
	The root folder
	The app folder
	The lib folder
	The hooks folder
	The node_modules folder
	The tns-core-modules folder

	The platforms folder
	The platforms/android folder
	The platforms/iOS folder

	The app folder
	The .gradle folder
	The App_Resources folder
	The fonts folder
	The app folder files
	The package.json file
	License
	App.js

	App.css
	Application page
	The main-page.js file
	The main-page.css file
	The main-page.xml file
	The main-view-model.js file

	Foundational components
	Application component
	Frame component
	Page component

	Creating a second page
	Creating additional files and pages
	Creating settings.js
	Navigating to another page
	Running the application
	Viewing our screen

	Summary

	Chapter 3: Declarative UI, Styling,
and Events
	Declarative UI
	XML parser
	Page, StackLayout, label, and more
	<Page ...> node
	<StackLayout ...> node
	<Label ...> node
	<Button ...> node
	Second <Label...> node

	Declarative UI and components
	Visual components

	Using the Declarative UI for our settings page
	Our settings.xml file

	Binding and event system
	Event system
	Binding
	Styling the UI
	What is CSS?
	Why use CSS?
	How to use CSS
	Configuring your CSS Rules
	Existing CSS properties
	Exploring app.css

	Trying CSS out and styling our application
	Styling on your own

	Summary

	Chapter 4: Building a Featured Application
	Layouts
	StackLayout
	WrapLayout
	AbsoluteLayout
	DockLayout
	GridLayout

	Building our featured application
	Nonvisual components
	Dialogs
	Alert dialog
	Confirm dialog
	Prompt dialog
	Login dialog
	Action dialog

	Promises
	The settings screen Declarative UI
	GridLayouts

	Building the main screen
	JavaScript code
	Declarative UI
	Main page Declarative UI
	Main page body
	ScrollViews
	More about bindings
	Repeaters
	Main-body footer

	The main-page.css file
	Application CSS

	Fonts
	Icons
	Communication with the server
	Trying out our application
	The server
	Setting up your own server

	Trying crossCommunicator out.

	Summary

	Chapter 5: Installing Third-Party Components
	Places to find third-party components
	The Telerik plugin site
	npmjs.com
	The NativeScript unofficial plugin list

	How to install a third-party plugin component
	Installing the vibration plugin
	Installing the webSockets plugin
	Installing the Telerik SideDrawer plugin

	Using third-party components
	Using the vibration plugin
	Using Websockets
	Using Telerik's side drawer
	Easily using the components
	Useful third-party components

	Summary

	Chapter 6: Platform Differences
	Android and iOS differences
	The soft keyboard
	The Page.loaded event

	Code differences
	Platform classes
	Declarative UI
	Declarative UI properties
	Declarative UI platform qualifiers

	Platform- and device-specific files
	Screen size differences
	Fonts
	Our own custom resource folders
	Compiled application resources on iOS
	Compiled application resources on Android

	Device differences
	Summary

	Chapter 7: Testing and Deploying
Your App
	Testing your application
	Test frameworks
	Local testing of your code
	Unit testing on the device
	Installing the test framework
	Writing tests
	Running tests

	Testing your app on a device or emulator
	Understanding the call stack
	Android call stack
	iOS call stack

	Debugging your application
	Publishing your application
	Publishing to iOS

	Summary

	Index

